nonlinear photonic crystals
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 38)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Tayebeh Naseri ◽  
Hamid Pashaei Adl

Abstract In this work, we revisit the optical response of a one-dimensional photonic crystal consisting of graphene monolayers and a plasmonic nanocomposite as a defect layer in the structure. By taking advantage of the modified transfer matrix approach, the analytical solution of the light transmission and field distribution of the photonic crystal are evaluated. Besides, by considering one of the layers as a Kerr-nonlinear medium, we delve into optical bistability phenomenon in the model for two different cases. Our numerical results reveal that the proposed photonic crystal can enhance the field distribution and reduce the optical bistability’s threshold in comparison to the conventional photonic crystals. Furthermore, the optical bistable switch-up and switch-down thresholds of the proposed resonator can be tailored flexibly by plasmon-plasmon interactions in the defect layer. Finally, the electric field distribution amelioration and optical bistability by means of graphene layers in the structure are attainable. The influences of the parameters such as the graphene and the nanocomposite on the performance of OB are analyzed and compared in the two different cases. Therefore, present approach can lay the groundwork for designing highly sensitive surface plasmon resonance biosensors and switches where the proposed technique may find unprecedented capabilities.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052092
Author(s):  
O Sabirov ◽  
N Akbarova ◽  
N Atadjanova ◽  
U Sapaev

Abstract The process of parametric amplification of light from short laser pulses in nonlinear photonic crystals is analyzed numerically. The calculations were carried out taking into account the effects of the dispersion of the medium up to the third order and cubic nonlinearity of the Kerr type. It is shown that a change in the size of domains can significantly affect the formation of a signal wave pulse. On the basis of the results obtained, we analyzed the optimal values of the domain size at which the efficient energetic generation of the signal wave is observed.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ningbin Mao ◽  
Yutao Tang ◽  
Mingke Jin ◽  
Guanqing Zhang ◽  
Yang Li ◽  
...  

Abstract In linear optical processes, compact and effective wavefront shaping techniques have been developed with the artificially engineered materials and devices in the past decades. Recently, wavefront shaping of light at newly generated frequencies was also demonstrated using nonlinear photonic crystals and metasurfaces. However, the nonlinear wave-shaping devices with both high nonlinear optical efficiency and high wave shaping efficiency are difficult to realize. To circumvent this constraint, we propose the idea of metasurface decorated optical crystal to take the best aspects of both traditional nonlinear crystals and photonic metasurfaces. In the proof-of-concept experiment, we show that a silicon nitride metasurface decorated quartz crystal can be used for the wavefront shaping of the second harmonic waves generated in quartz. With this crystal-metasurface hybrid platform, the nonlinear vortex beam generation and nonlinear holography were successfully demonstrated. The proposed methodology may have important applications in nonlinear structured light generation, super-resolution imaging, and optical information processing, etc.


2021 ◽  
pp. 2101098
Author(s):  
Yuan Liu ◽  
Wei Chen ◽  
Wang Zhang ◽  
Chao‐Qun Ma ◽  
Huai‐Xi Chen ◽  
...  

2021 ◽  
Vol 23 (11) ◽  
pp. 115501
Author(s):  
S Mohand Ousaid ◽  
K-H Chang ◽  
M Chakaroun ◽  
T Billeton ◽  
L-H Peng ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ady Arie

AbstractA nonlinear hologram enables to record the amplitude and phase of a waveform by spatially modulating the second order nonlinear coefficient, so that when a pump laser illuminates it, this waveform is reconstructed at the second harmonic frequency. The concept was now extended to enable the generation of multiple waveforms from a single hologram, with potential applications in high density storage, quantum optics, and optical microscopy.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Aviv Karnieli ◽  
Yongyao Li ◽  
Ady Arie

AbstractThe geometric phase of light has been demonstrated in various platforms of the linear optical regime, raising interest both for fundamental science as well as applications, such as flat optical elements. Recently, the concept of geometric phases has been extended to nonlinear optics, following advances in engineering both bulk nonlinear photonic crystals and nonlinear metasurfaces. These new technologies offer a great promise of applications for nonlinear manipulation of light. In this review, we cover the recent theoretical and experimental advances in the field of geometric phases accompanying nonlinear frequency conversion. We first consider the case of bulk nonlinear photonic crystals, in which the interaction between propagating waves is quasi-phase-matched, with an engineerable geometric phase accumulated by the light. Nonlinear photonic crystals can offer efficient and robust frequency conversion in both the linearized and fully-nonlinear regimes of interaction, and allow for several applications including adiabatic mode conversion, electromagnetic nonreciprocity and novel topological effects for light. We then cover the rapidly-growing field of nonlinear Pancharatnam-Berry metasurfaces, which allow the simultaneous nonlinear generation and shaping of light by using ultrathin optical elements with subwavelength phase and amplitude resolution. We discuss the macroscopic selection rules that depend on the rotational symmetry of the constituent meta-atoms, the order of the harmonic generations, and the change in circular polarization. Continuous geometric phase gradients allow the steering of light beams and shaping of their spatial modes. More complex designs perform nonlinear imaging and multiplex nonlinear holograms, where the functionality is varied according to the generated harmonic order and polarization. Recent advancements in the fabrication of three dimensional nonlinear photonic crystals, as well as the pursuit of quantum light sources based on nonlinear metasurfaces, offer exciting new possibilities for novel nonlinear optical applications based on geometric phases.


Sign in / Sign up

Export Citation Format

Share Document