light amplification
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 56)

H-INDEX

29
(FIVE YEARS 3)

Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Vicente Aboites ◽  
Jorge Francisco Bravo-Avilés ◽  
Juan Hugo García-López ◽  
Rider Jaimes-Reategui ◽  
Guillermo Huerta-Cuellar

In this work, the Lotka–Volterra equations where applied to laser physics to describe population inversion and the number of emitted photons. Given that predation and stimulated emissions are analogous processes, two rate equations where obtained by finding suitable parameter transformations for a three-level laser. This resulted in a set of differential equations which are isomorphic to several laser models under accurate parameter identification. Furthermore, the steady state provided two critical points: one where light amplification stops and another where continuous-wave operation is achieved. Lyapunov’s first method of stability yielded the conditions for the convergence to the continuous-wave point, whereas a Lyapunov potential provided its stability regions. Finally, the Q-Switching technique was modeled by introducing a periodic variation of the quality Q of the cavity. This resulted in the transformation of the asymptotically stable fixed point into a limit cycle in the phase space.


2021 ◽  
Author(s):  
Shaoxin Shen ◽  
Yue Zeng ◽  
Ze-huan Zheng ◽  
Renxian Gao ◽  
Guoya Sun ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
R.K. Saket

The authors have developed a prototype, which promises easy passage for trains in unknown environments such as zero visibility situations, fog, smog, and heavy rain. The prototype is based upon the integration of a camera, Radio Detection and Ranging (RADAR), and Infrared (IR) Light Amplification by Stimulated Emission of Radiation (LASER).The camera used in the prototype catches a long-range view of the track and presents it live on a mini screen fixed in the loco pilot cabin. A combined short, mid, and long-range radar sensor system is used to detect obstacles continuously in loco pilot blind spots on the track, particularly for collision avoidance assistance at high speed. The present work proposes a long-range laser IR illuminator with a wide range of color and mono cameras to aid clear and precise monitoring in zero visibility conditions, which is fixed on the front portion/engine of the locomotive/engine. The prototype experimental results for 2 m - 2 km distances have been performed on a live running train, which shows that the developed prototype tracks obstacles effectively during fog and smog conditions. The design concept, observation, prototype model, and other technical specifications have been presented, and satisfactory results were found.


2021 ◽  
Author(s):  
R.K. Saket

The authors have developed a prototype, which promises easy passage for trains in unknown environments such as zero visibility situations, fog, smog, and heavy rain. The prototype is based upon the integration of a camera, Radio Detection and Ranging (RADAR), and Infrared (IR) Light Amplification by Stimulated Emission of Radiation (LASER).The camera used in the prototype catches a long-range view of the track and presents it live on a mini screen fixed in the loco pilot cabin. A combined short, mid, and long-range radar sensor system is used to detect obstacles continuously in loco pilot blind spots on the track, particularly for collision avoidance assistance at high speed. The present work proposes a long-range laser IR illuminator with a wide range of color and mono cameras to aid clear and precise monitoring in zero visibility conditions, which is fixed on the front portion/engine of the locomotive/engine. The prototype experimental results for 2 m - 2 km distances have been performed on a live running train, which shows that the developed prototype tracks obstacles effectively during fog and smog conditions. The design concept, observation, prototype model, and other technical specifications have been presented, and satisfactory results were found.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052092
Author(s):  
O Sabirov ◽  
N Akbarova ◽  
N Atadjanova ◽  
U Sapaev

Abstract The process of parametric amplification of light from short laser pulses in nonlinear photonic crystals is analyzed numerically. The calculations were carried out taking into account the effects of the dispersion of the medium up to the third order and cubic nonlinearity of the Kerr type. It is shown that a change in the size of domains can significantly affect the formation of a signal wave pulse. On the basis of the results obtained, we analyzed the optimal values of the domain size at which the efficient energetic generation of the signal wave is observed.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2574
Author(s):  
Saif M. H. Qaid ◽  
Hamid M. Ghaithan ◽  
Khulod K. AlHarbi ◽  
Bandar Ali Al-Asbahi ◽  
Abdullah S. Aldwayyan

Photonic devices based on perovskite materials are considered promising alternatives for a wide range of these devices in the future because of their broad bandgaps and ability to contribute to light amplification. The current study investigates the possibility of improving the light amplification characteristics of CsPbBr3 perovskite quantum dot (PQD) films using the surface encapsulation technique. To further amplify emission within a perovskite layer, CsPbBr3 PQD films were sandwiched between two transparent layers of poly(methyl methacrylate) (PMMA) to create a highly flexible PMMA/PQD/PMMA waveguide film configuration. The prepared perovskite film, primed with a polymer layer coating, shows a marked improvement in both emission efficiency and amplified spontaneous emission (ASE)/laser threshold compared with bare perovskite films on glass substrates. Additionally, significantly improved photoluminescence (PL) and long decay lifetime were observed. Consequently, under pulse pumping in a picosecond duration, ASE with a reduction in ASE threshold of ~1.2 and 1.4 times the optical pumping threshold was observed for PQDs of films whose upper face was encapsulated and embedded within a cavity comprising two PMMA reflectors, respectively. Moreover, the exposure stability under laser pumping was greatly improved after adding the polymer coating to the top face of the perovskite film. Finally, this process improved the emission and PL in addition to enhancements in exposure stability. These results were ascribed in part to the passivation of defects in the perovskite top surface, accounting for the higher PL intensity, the slower PL relaxation, and for about 14 % of the ASE threshold decrease.


2021 ◽  
Vol 11 ◽  
pp. 90-99
Author(s):  
Narayan H. Gandedkar ◽  
Oyku Dalci ◽  
M. Ali Darendeliler

The University of Sydney’s Discipline of Orthodontics has been actively pursuing research in the areas of root resorption, sleep apnea, magnets in orthodontics, implants, acceleration of orthodontic tooth movement (OTM), and remote monitoring (RM). Our research has shed light on many specific factors that influence orthodontically induced inflammatory root resorption (OIIRR). We also explored the effects of some of the most discussed acceleration interventions on OTM and OIIRR, such as vibration, micro-osteoperforations, piezocision, low-level laser therapy, light emitting diode, light amplification by stimulated emission of radiation, and pharmacological substances. Further, we have researched into maximizing orthopedic treatment outcomes of maxillary deficient children with use of intraoral force application with utilization of miniscrew-assisted rapid palatal expander. We are currently trialing use of RM to facilitate orthodontic services in the public dental clinics.


Sign in / Sign up

Export Citation Format

Share Document