scholarly journals Production of ion beams in high-power laser–plasma interactions and their applications

2004 ◽  
Vol 22 (1) ◽  
pp. 19-24 ◽  
Author(s):  
F. PEGORARO ◽  
S. ATZENI ◽  
M. BORGHESI ◽  
S. BULANOV ◽  
T. ESIRKEPOV ◽  
...  

Energetic ion beams are produced during the interaction of ultrahigh-intensity, short laser pulses with plasmas. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear targets to proton imaging, deep proton lithography, medical physics, and injectors for conventional accelerators. Although the basic physical mechanisms of ion beam generation in the plasma produced by the laser pulse interaction with the target are common to all these applications, each application requires a specific optimization of the ion beam properties, that is, an appropriate choice of the target design and of the laser pulse intensity, shape, and duration.

1977 ◽  
Vol 55 (22) ◽  
pp. 1956-1961 ◽  
Author(s):  
E. A. Ballik ◽  
B. K. Garside ◽  
R. S. Taylor ◽  
T. A. Znotins

Measurements were performed to determine the dynamical characteristics of high pressure SF6 absorption at the 10.4 μm band of CO2 as a function of laser pulse intensity. Both long (~ 200 ns FWHM) and short (~ 5 ns FWHM) CO2 laser pulses were employed. The observed pulse transmission characteristics can be accounted for using a vibrational bath model, which allows for the very large number of levels in the absorption spectrum of SF6.


2006 ◽  
Vol 24 (3) ◽  
pp. 347-353 ◽  
Author(s):  
MUHAMMAD SHAHBAZ ANWAR ◽  
ANWAR LATIF ◽  
M. IQBAL ◽  
M. SHAHID RAFIQUE ◽  
M. KHALEEQ-UR-RAHMAN ◽  
...  

Theoretical studies have been performed on the interaction of short laser pulse with metals. The results of the theoretical model indicate that heat conduction would not be uniform from focal spot or crater at the surface of target metal, when an ultra short laser will interact with the metal. The electromagnetic radiations of laser induce electric field inside the target that is responsible for the induction of current density, which causes electronic heat conduction in the direction of current density. Such an effect is dominant for laser pulse having duration less than of the order of sub-picoseconds. This mode will open a new significant field of study to discuss laser metal interaction for ultra short laser pulses.


1999 ◽  
Vol 17 (1) ◽  
pp. 129-138 ◽  
Author(s):  
A.M. SERGEEV ◽  
M. LONTANO ◽  
A.V. KIM ◽  
V.B. GILDENBURG ◽  
M.D. CHERNOBROVTSEVA ◽  
...  

We demonstrate that short laser pulse self-guiding over distances of many Rayleigh lengths can be achieved in the absence of any focusing nonlinearity as a result of trapping of a leaking wave in a plasma channel produced by field-induced ionization in the saturation regime. A detailed computational study of the new self-guiding effect in both cases of comparatively long laser pulses, when the traditional approximation of the slowly varying complex amplitude is valid, and of high intense ultrashort laser pulses comprising only few field cycles have been performed.


2005 ◽  
Vol 23 (4) ◽  
pp. 401-409 ◽  
Author(s):  
J. BADZIAK ◽  
S. GŁOWACZ ◽  
S. JABŁOŃSKI ◽  
P. PARYS ◽  
J. WOŁOWSKI ◽  
...  

Basic properties of generation of high-current ion beams using the skin-layer ponderomotive acceleration (S-LPA) mechanism, induced by a short laser pulse interacting with a solid target are studied. Simplified scaling laws for the ion energies, the ion current densities, the ion beam intensities, and the efficiency of ions' production are derived for the cases of subrelativistic and relativistic laser-plasma interactions. The results of the time-of-flight measurements performed for both backward-accelerated ion beams from a massive target and forward-accelerated beams from a thin foil target irradiated by 1-ps laser pulse of intensity up to ∼ 1017 W/cm2 are presented. The ion current densities and the ion beam intensities at the source obtained from these measurements are compared to the ones achieved in recent short-pulse experiments using the target normal sheath acceleration (TNSA) mechanism at relativistic (>1019 W/cm2) laser intensities. The possibility of application of high-current ion beams produced by S-LPA at relativistic intensities for fast ignition of fusion target is considered. Using the derived scaling laws for the ion beam parameters, the achievement conditions for ignition of compressed DT fuel with ion beams driven by ps laser pulses of total energy ≤ 100 kJ is shown.


2004 ◽  
Vol 22 (4) ◽  
pp. 399-405 ◽  
Author(s):  
V. MALKA ◽  
S. FRITZLER

It is known that relativistic laser plasma interactions can already today induce accelerating fields beyond some TV/m, which are indeed capable to efficiently accelerate plasma background electrons as well as protons. An introduction to the current state of the art will be given and possible applications of these optically induced charged particle sources will be discussed.


2007 ◽  
Vol 25 (2) ◽  
pp. 267-275 ◽  
Author(s):  
A.YA. Faenov ◽  
A.I. Magunov ◽  
T.A. Pikuz ◽  
I. YU. Skobelev ◽  
S.V. Gasilov ◽  
...  

X-ray spectra of plasma produced by the interaction of Ti:Sa laser pulses (duration from 60 fs to 1 ps, and energy from 15 mJ to 128 mJ) with foil and solid Teflon and AL targets are investigated. It is shown experimentally and theoretically that the use of low contrast (10−2 – 10−4) short laser pulses, essentially promotes the conditions for generation of fast multi-charged ions. This effect is caused by self-focusing of the main laser pulse in a preplasma produced by intense laser prepulses. Modeling of the observed spectral line shape gives evidence of a considerable (about 3%) amount of multi-charged He-like F ions with energy E ∼ 1 MeV at rather low values of laser intensity IL ≈ 6 × 1016 W cm−2.


2004 ◽  
Vol 22 (3) ◽  
pp. 203-206 ◽  
Author(s):  
C.C. CHIRILĂ ◽  
C.J. JOACHAIN ◽  
N.J. KYLSTRA ◽  
R.M. POTVLIEGE

At high laser intensities, three step recollision processes such as high order harmonic generation and high-order ATI, are normally severely suppressed due to the magnetic field component of the laser pulse. However, if the laser pulse and relativistic ion beam are directed against each other, a significant increase in the frequency and the intensity of the pulse in the rest frame of the ions can occur. By performing calculations based on a Coulomb-corrected nondipole strong field approximation, we have shown that there is a range of intensities, Lorentz factors, and ion charges for which the suppression of the three step recollision processes is not severe, even for ponderomotive energies exceeding 10 keV. As an example, we consider parameters relevant to the accelerator that will be built at GSI-Darmstadt, capable of accelerating multicharged ions to Lorentz factors reaching 30.


1981 ◽  
Vol 4 ◽  
Author(s):  
R. Andrew ◽  
L. Baufay ◽  
A. Pigeolet ◽  
L.D. Laude

ABSTRACTThe preparation of AlSb thin films by pulsed laser annealing of Al/Sb sandwiches is studied in order to resolve some past controversy about the temperature rise induced by the laser pulse. Using 1000 Ȧ thick two layer films supported by TEM grids, we investigate the energy threshold for complete transformation as a function of pulse duration from 15 nsec to 100 msec, and of ambient temperature from −100°C to 250°C.We thence calculate the temperature effect directly induced by the laser to be about 930°C, or approximately the melting point of the metals, whereas inert gas furnace anneals of comparable films show transformation at this temperature occuring only in about 100 sec. We discuss the isoenergetic nature of the system for short laser pulses and the role of the heat of transformation, and thus conclude that the reaction is thermally triggered by the laser pulse but is to some extent self-sustaining via the heat of transformation locally distributed. This model is also shown to have equal validity for the systems CdTe, CdSe and AlAs.


2017 ◽  
Vol 35 (2) ◽  
pp. 286-293 ◽  
Author(s):  
J. Domański ◽  
J. Badziak ◽  
S. Jabłoński

AbstractThe paper presents results of two-dimensional particle-in-cell simulations of ion beam acceleration at the interactions of a 130-fs laser pulse of intensity in the range 1021–1023 W/cm2, predicted for the Extreme Light Infrastructure lasers, with thin hydrocarbon (CH) or erbium hydride (ErH3) targets. A special attention is paid to the effect of the laser pulse intensity and polarization (linear, circular) on the proton energy spectrum, the proton beam spatial distribution and the proton pulse shape and intensity. It is shown that for the low laser intensities (~1021 W/cm2) considerably higher proton beam parameters (proton energies, beam intensities) are achieved for the ErH3 target for both polarizations and the effect of polarization on the beam parameters is significant (higher parameters are achieved for the linear polarization). However, for the highest, ultra-relativistic intensities (~1023 W/cm2) higher proton beam parameters are attained for the CH target and the effect of polarization on these parameters is relatively low. In this case, for both polarizations quasi-monoenergetic proton beams are generated from the CH target of the mean proton energy ~2 GeV and $dE_{\rm p} /\bar E_{\rm p} \approx 0.3$ for the linear polarization and $dE_{\rm p} /\bar E_{\rm p} \approx 0.2$ for the circular one. At the highest laser intensities also the proton pulse peak intensities are higher for the CH target and for both polarizations they reach values well above 1021 W/cm2. In the paper, the properties of proton beam generation indicated above are discussed in detail and a physical explanation of the observed effects is done.


2018 ◽  
Vol 167 ◽  
pp. 01004 ◽  
Author(s):  
Jaroslaw Domanski ◽  
Jan Badziak

One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th) ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity ~ 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values ~ 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment.


Sign in / Sign up

Export Citation Format

Share Document