scholarly journals Research on UDE control based on load torque compensation of PMSM

2021 ◽  
Vol 2137 (1) ◽  
pp. 012024
Author(s):  
Hongliang Yan ◽  
Weizhi Zhai ◽  
Yan Geng

Abstract In order to solve the problem that the traditional uncertainty and disturbance estimator (UDE) control needs to increase the filter order to keep good performance when facing rapid disturbance changes, thus lead to cost increase in implementing the system, a speed control strategy of permanent magnet synchronous motor (PMSM) driver based on reduced order observer compensation is proposed. The designed control strategy is robust to the system with internal parameter variation and external torque disturbance. Through the compensation of load torque, the pressure of UDE controller is relieved, and then the tracking error of high-frequency component in load torque is eliminated, and the control performance of the system is improved more effectively. This paper proves the superiority of the new compound controller through comparison of simulation. results

Author(s):  
Mohamadreza Homayounzade ◽  
Mehdi Keshmiri

This paper presents a novel reduced-order observer based controller for a class of Lipschitz nonlinear systems, described by a set of second order ordinary differential equations. The control law is designed based on the measured output and estimated states. The main features are: (1) The computation cost is reduced noticeably, since the observer is a reduced-order one; (2) The controller guarantees semi-global exponential stability for both estimation and tracking error; and (3) The proposed method can be used in a large range of applications, especially in mechanical systems. The effectiveness of the proposed method is investigated through the numerical simulation for a two-degrees-of-freedom robot manipulator acting on a horizontal worktable.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
S. Ganesh Kumar ◽  
S. Hosimin Thilagar

Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response in estimating the load torque. Sensitivity analysis is also performed to select the appropriate control variables. Simulation and experimental results fully confirm the superiority of the proposed approach suggested in this paper.


2019 ◽  
Vol 42 (7) ◽  
pp. 1345-1357
Author(s):  
Chunyan Wang ◽  
Mengqi Zhang ◽  
Huan Li

This paper investigates an adaptive fuzzy tracking control problem under arbitrary switching for a class of switched non-affine systems with completely unknown nonlinear functions and unmeasurable states. Combining with dynamic surface control (DSC) method and fuzzy approximation technique, an adaptive output-feedback common control approach is presented based on a new fuzzy reduced-order observer which is independent of any switching signal. The given design method does not rely on the boundness assumption about the control gain functions raised by the mean value theorem for non-affine systems, which contributes to the less conservation of the common controller. Meanwhile, the algebraic loop problem caused by the nonstrict-feedback structure and the repeated approximation problem in existing results are also circumvented in the given common control design process. Based on Lyapunov stability theory, the designed common controller can guarantee all the signals in the resulting closed-loop switched systems are uniformly bounded and the tracking error can converge to a small neighborhood of the origin. Two examples are provided to verify the feasibility and practicability of the proposed method.


2008 ◽  
Vol 18 (10) ◽  
pp. 3129-3136 ◽  
Author(s):  
FANG-LAI ZHU ◽  
MAO-YIN CHEN

Within the drive-response configuration, this paper considers the synchronization of uncertain chaotic systems based on observers. Even if there are unknown disturbances and parameters in the drive system, a robust adaptive full-order observer can be used to realize chaos synchronization. Further, we develop a reduced-order observer-based response system to synchronize the drive system. By choosing a special reduced-order gain matrix, the reduced-order observer-based response system turns out to be linear and can eliminate the influence of the unknown disturbances and parameters directly. We also discuss the above mentioned two kinds of observers in numerical simulation, and demonstrate that the linear reduced-order observer-based response system is better than the full-order observer-based one.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Jinpeng Yu ◽  
Junwei Gao ◽  
Yumei Ma ◽  
Haisheng Yu

The speed tracking control problem of permanent magnet synchronous motors with parameter uncertainties and load torque disturbance is addressed. Fuzzy logic systems are used to approximate nonlinearities, and an adaptive backstepping technique is employed to construct controllers. The proposed controller guarantees the tracking error convergence to a small neighborhood of the origin and achieves the good tracking performance. Simulation results clearly show that the proposed control scheme can track the position reference signal generated by a reference model successfully under parameter uncertainties and load torque disturbance without singularity and overparameterization.


Sign in / Sign up

Export Citation Format

Share Document