scholarly journals Adaptive Fuzzy Tracking Control for a Permanent Magnet Synchronous Motor via Backstepping Approach

2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Jinpeng Yu ◽  
Junwei Gao ◽  
Yumei Ma ◽  
Haisheng Yu

The speed tracking control problem of permanent magnet synchronous motors with parameter uncertainties and load torque disturbance is addressed. Fuzzy logic systems are used to approximate nonlinearities, and an adaptive backstepping technique is employed to construct controllers. The proposed controller guarantees the tracking error convergence to a small neighborhood of the origin and achieves the good tracking performance. Simulation results clearly show that the proposed control scheme can track the position reference signal generated by a reference model successfully under parameter uncertainties and load torque disturbance without singularity and overparameterization.

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Huanqing Wang ◽  
Xiaoping Liu ◽  
Qi Zhou ◽  
Hamid Reza Karimi

The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around the origin in the sense of mean quartic value. The main advantages lie in that the proposed controller structure is simpler and only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed approach.


Author(s):  
Enrique Alvaro-Mendoza ◽  
Oscar S Salas-Peña ◽  
Jesús De León-Morales

In this article, a sensorless speed control design for the interior permanent magnet synchronous motor based on sliding mode approach is proposed. The control objective is to drive the rotor speed to desired reference despite load torque disturbances and parameter uncertainties. The proposed control strategy combines a Sliding Mode Controller with an Adaptive Interconnected Observer design based on sliding mode techniques, which allows to estimate the rotor speed, the stator resistance and the load torque. Furthermore, experimental results, including a comparative study against schemes from literature, illustrate the robustness and performance of proposed approach.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Jinpeng Yu ◽  
Junwei Gao ◽  
Yumei Ma ◽  
Haisheng Yu ◽  
Songfeng Pan

An adaptive fuzzy control method is developed to control chaos in the permanent magnet synchronous motor drive system via backstepping. Fuzzy logic systems are used to approximate unknown nonlinearities, and an adaptive backstepping technique is employed to construct controllers. The proposed controller can suppress the chaos of PMSM and track the reference signal successfully. The simulation results illustrate its effectiveness.


Author(s):  
Zhaowu Ping ◽  
Yang Song ◽  
Yaoyi Li ◽  
Yunzhi Huang ◽  
Jun-Guo Lu

It is well known that the position tracking control problem of permanent magnet synchronous motor (PMSM) is a challenging task when parameter uncertainties and time-varying load torque disturbances are taken into account. In this paper, a two-step controller design strategy composed of triple-loop control and internal model control is proposed to achieve a wide range of position tracking control of PMSM, where the reference position can be a relatively large value. In contrast, only local position tracking control problem has been solved by an internal model approach from output regulation theory in the recent work. In addition to the simulation results, the first experimental study is conducted to demonstrate the effectiveness of the proposed two-step control method. It is worth mentioning that our design can guarantee precise position tracking with a wide position range despite parameter uncertainties and time-varying load torque disturbances.


Author(s):  
Tao Wang ◽  
Jikun Li ◽  
Yuwen Liu

The control of permanent magnet synchronous motor has become an important research, and many control methods have been developed because of its high efficiency and energy-saving characteristics. This article proposes a new motor control approach based on synergetic approach in control theory (SACT) and sliding-mode control (SMC). Since the load torque of the motor will change, the moment of inertia will increase in the experiment. The load torque is estimated by the sliding-mode observer. The moment of inertia is calculated by the least squares method by adding a forgetting factor. The practical application of synergetic control theory broadens the train of thought to meet the demand of high-performance motor drive further. The simulation and experimental results show that this control scheme in this article can improve the transient response and system robustness of dynamic systems.


Robotica ◽  
2021 ◽  
pp. 1-20
Author(s):  
Shubo Liu ◽  
Guoquan Liu ◽  
Shengbiao Wu

Abstract This study is concerned with the tracking control problem for nonlinear uncertain robotic systems in the presence of unknown actuator nonlinearities. A novel adaptive sliding controller is designed based on a robust disturbance observer without any prior knowledge of actuator nonlinearities and system dynamics. The proposed control strategy can guarantee that the tracking error eventually converges to an arbitrarily small neighborhood of zero. Simulation results are included to demonstrate the effectiveness and superiority of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document