scholarly journals Sensorless Load Torque Estimation and Passivity Based Control of Buck Converter Fed DC Motor

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
S. Ganesh Kumar ◽  
S. Hosimin Thilagar

Passivity based control of DC motor in sensorless configuration is proposed in this paper. Exact tracking error dynamics passive output feedback control is used for stabilizing the speed of Buck converter fed DC motor under various load torques such as constant type, fan type, propeller type, and unknown load torques. Under load conditions, sensorless online algebraic approach is proposed, and it is compared with sensorless reduced order observer approach. The former produces better response in estimating the load torque. Sensitivity analysis is also performed to select the appropriate control variables. Simulation and experimental results fully confirm the superiority of the proposed approach suggested in this paper.

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1914
Author(s):  
Ganesh Kumar Srinivasan ◽  
Hosimin Thilagar Srinivasan ◽  
Marco Rivera

In this paper, passivity-based control (PBC) of a Luo converter-fed DC motor is implemented and presented. In PBC, both exact tracking error dynamics passive output feedback control (ETEDPOF) and energy shaping and damping injection methods do not require a speed sensor. As ETEDPOF does not depend upon state computation, it is preferred in the proposed work for the speed control of a DC motor under no-load and loaded conditions. Under loaded conditions, the online algebraic approach in sensorless mode (SAA) is used for estimating different load torques applied on the DC motor such as: constant, frictional, fan-type, propeller-type and unknown load torques. Performance of SAA is tested with the reduced order observer in sensorless mode (SROO) approach and analyzed, and the results are presented to validate the low-cost implementation of PBC for a DC drive without a speed and torque sensor.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1942
Author(s):  
Ganesh Kumar Srinivasan ◽  
Hosimin Thilagar Srinivasan ◽  
Marco Rivera

In this paper, identification of sensitive variables is attempted for second-order (flat/partially flat) and fourth-order partially flat converters with dynamic loads. The sensitivity nature of each state variable to the output speed variable of the DC motor for the above-mentioned systems was analyzed via the frequency domain technique. Further, in continuation of this, we aimed to confirm that the variables that are used in the control law exact tracking error dynamics, passive output feedback control (ETEDPOF) are sensitive. To verify the sensitivity property, an experimental case study was done using ETEDPOF and compared with the proportional-integral controller (PIC) for a flat system, and the results are presented.


2016 ◽  
Vol 14 (10) ◽  
pp. 4227-4234 ◽  
Author(s):  
R.S. Ortigoza ◽  
J.N.A. Juarez ◽  
J.R.G. Sanchez ◽  
V.M.H. Guzman ◽  
C.Y.S. Cervantes ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 5608
Author(s):  
Fredy E. Hoyos ◽  
John E. Candelo-Becerra ◽  
Alejandro Rincón

This paper presents the use of the buck converter with Zero Average Dynamics to control the speed of a permanent magnet direct current motor. For this objective, we consider a fourth-order nonlinear model that describes the system’s dynamics and tests different scenarios to determine how the direct current motor responds. The results show a robust speed tracking performance of the direct current motor under the reference signal and controller parameter changes and disturbances in the load torque. A non-saturated duty cycle with fixed commutation frequency is obtained in the power supply of the DC motor, and a low steady-state value of the speed tracking error is achieved in both experimental and simulation results. In summary, the effectiveness of the Zero Average Dynamics control strategy for high order systems was experimentally proved.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012024
Author(s):  
Hongliang Yan ◽  
Weizhi Zhai ◽  
Yan Geng

Abstract In order to solve the problem that the traditional uncertainty and disturbance estimator (UDE) control needs to increase the filter order to keep good performance when facing rapid disturbance changes, thus lead to cost increase in implementing the system, a speed control strategy of permanent magnet synchronous motor (PMSM) driver based on reduced order observer compensation is proposed. The designed control strategy is robust to the system with internal parameter variation and external torque disturbance. Through the compensation of load torque, the pressure of UDE controller is relieved, and then the tracking error of high-frequency component in load torque is eliminated, and the control performance of the system is improved more effectively. This paper proves the superiority of the new compound controller through comparison of simulation. results


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2553
Author(s):  
Youngwoo Lee ◽  
Wonhee Kim

In this paper, position control using both a nonlinear position controller and a current controller with an augmented observer is proposed for a Brushless DC motor. The nonlinear position controller is designed to improve the position tracking performance based on the tracking error dynamics. The current controller is developed to track the desired currents generated from the desired torque, which is calculated based on the nonlinear position controller. The augmented observer is designed to obtain the knowledge of both state variables and disturbance. Closed-loop stability is proven through the Lyapunov theorem. Simulations were performed to evaluate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document