scholarly journals Adiabatic exponent in isentropic convective zone: A heavy elements abundance and seismic inversion

2011 ◽  
Vol 271 ◽  
pp. 012036
Author(s):  
V A Baturin
1983 ◽  
Vol 66 ◽  
pp. 215-222
Author(s):  
S.V. Vorontsov ◽  
K.I. Marchenkov

AbstractNormal mode spectra and neutrino counting rates are calculated for a set of chemically-inhomogeneous solar models. Each model has a core with a high concentration of heavy elements; high opacity makes the core convective. The structure of the envelope is that of the standard model. It is shown that (1) the spectrum of g modes becomes less densely separated than that of the standard model, which simplifies the problem of interpreting 160-min oscillations; (2) low neutrino counting rates may be achieved for a low initial helium concentration in the core; (3) the models do not contradict the frequency spacing of global 5-min oscillations.


1988 ◽  
Vol 132 ◽  
pp. 501-506
Author(s):  
C. Sneden ◽  
C. A. Pilachowski ◽  
K. K. Gilroy ◽  
J. J. Cowan

Current observational results for the abundances of the very heavy elements (Z>30) in Population II halo stars are reviewed. New high resolution, low noise spectra of many of these extremely metal-poor stars reveal general consistency in their overall abundance patterns. Below Galactic metallicities of [Fe/H] Ã −2, all of the very heavy elements were manufactured almost exclusively in r-process synthesis events. However, there is considerable star-to-star scatter in the overall level of very heavy element abundances, indicating the influence of local supernovas on element production in the very early, unmixed Galactic halo. The s-process appears to contribute substantially to stellar abundances only in stars more metal-rich than [Fe/H] Ã −2.


Author(s):  
T. Oikawa ◽  
M. Inoue ◽  
T. Honda ◽  
Y. Kokubo

EELS allows us to make analysis of light elements such as hydrogen to heavy elements of microareas on the specimen. In energy loss spectra, however, elemental signals ride on a high background; therefore, the signal/background (S/B) ratio is very low in EELS. A technique which collects the center beam axial-symmetrically in the scattering angle is generally used to obtain high total intensity. However, the technique collects high background intensity together with elemental signals; therefore, the technique does not improve the S/B ratio. This report presents the experimental results of the S/B ratio measured as a function of the scattering angle and shows the possibility of the S/B ratio being improved in the high scattering angle range.Energy loss spectra have been measured using a JEM-200CX TEM with an energy analyzer ASEA3 at 200 kV.Fig.l shows a typical K-shell electron excitation edge riding on background in an energy loss spectrum.


Author(s):  
Noriyuki Kuwano ◽  
Masaru Itakura ◽  
Kensuke Oki

Pd-Ce alloys exhibit various anomalies in physical properties due to mixed valences of Ce, and the anomalies are thought to be strongly related with the crystal structures. Since Pd and Ce are both heavy elements, relative magnitudes of (fcc-fpd) are so small compared with <f> that superlattice reflections, even if any, sometimes cannot be detected in conventional x-ray powder patterns, where fee and fpd are atomic scattering factors of Ce and Pd, and <f> the mean value in the crystal. However, superlattices in Pd-Ce alloys can be analyzed by electron microscopy, thanks to the high detectability of electron diffraction. In this work, we investigated modulated superstructures in alloys with 12.5 and 15.0 at.%Ce.Ingots of Pd-Ce alloys were prepared in an arc furnace under atmosphere of ultra high purity argon. The disc specimens cut out from the ingots were heat-treated in vacuum and electrothinned to electron transparency by a jet method.


2020 ◽  
Vol 4 ◽  
pp. 27-29
Author(s):  
A.V. Novoyavchev ◽  
◽  
A.A. Kleimenov ◽  
M.Yu. Tokarev ◽  
K.M. Myatchin ◽  
...  

2013 ◽  
Author(s):  
Vimol Souvannavong ◽  
Fabien Allo ◽  
Thierry Coleou ◽  
Olivier Colnard ◽  
Ingrind Machecler ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document