scholarly journals Higgs to four leptons searches at the LHC: constraints on Abelian Hidden sector models

2013 ◽  
Vol 455 ◽  
pp. 012047
Author(s):  
Mathieu Aurousseau
Keyword(s):  
2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anthony Ashmore ◽  
Sebastian Dumitru ◽  
Burt A. Ovrut

Abstract The strongly coupled heterotic M-theory vacuum for both the observable and hidden sectors of the B − L MSSM theory is reviewed, including a discussion of the “bundle” constraints that both the observable sector SU(4) vector bundle and the hidden sector bundle induced from a single line bundle must satisfy. Gaugino condensation is then introduced within this context, and the hidden sector bundles that exhibit gaugino condensation are presented. The condensation scale is computed, singling out one line bundle whose associated condensation scale is low enough to be compatible with the energy scales available at the LHC. The corresponding region of Kähler moduli space where all bundle constraints are satisfied is presented. The generic form of the moduli dependent F-terms due to a gaugino superpotential — which spontaneously break N = 1 supersymmetry in this sector — is presented and then given explicitly for the unique line bundle associated with the low condensation scale. The moduli-dependent coefficients for each of the gaugino and scalar field soft supersymmetry breaking terms are computed leading to a low-energy effective Lagrangian for the observable sector matter fields. We then show that at a large number of points in Kähler moduli space that satisfy all “bundle” constraints, these coefficients are initial conditions for the renormalization group equations which, at low energy, lead to completely realistic physics satisfying all phenomenological constraints. Finally, we show that a substantial number of these initial points also satisfy a final constraint arising from the quadratic Higgs-Higgs conjugate soft supersymmetry breaking term.


2016 ◽  
Vol 2016 (5) ◽  
Author(s):  
Cheng-Wei Chiang ◽  
Masahiro Ibe ◽  
Tsutomu T. Yanagida
Keyword(s):  

2007 ◽  
Vol 76 (7) ◽  
Author(s):  
José Ramón Espinosa ◽  
Mariano Quirós
Keyword(s):  

2012 ◽  
Vol 86 (3) ◽  
Author(s):  
Bumseok Kyae ◽  
Jong-Chul Park
Keyword(s):  

2008 ◽  
Vol 77 (3) ◽  
Author(s):  
Robert Foot ◽  
Archil Kobakhidze ◽  
Kristian L. McDonald ◽  
Raymond R. Volkas

2008 ◽  
Vol 23 (39) ◽  
pp. 3271-3283 ◽  
Author(s):  
HYE-SUNG LEE

Supersymmetry is one of the best motivated new physics scenarios. To build a realistic supersymmetric standard model, however, a companion symmetry is necessary to address various issues. While R-parity is a popular candidate that can address the proton and dark matter issues simultaneously, it is not the only option for such a property. We review how a TeV scale U(1)′ gauge symmetry can replace the R-parity. Discrete symmetries of the U(1)′ can make the model still viable and attractive with distinguishable phenomenology. For instance, with a residual discrete symmetry of the U(1)′, Z6 = B3 × U2, the proton can be protected by the baryon triality (B3) and a hidden sector dark matter candidate can be protected by the U-parity (U2).


2011 ◽  
Vol 26 (37) ◽  
pp. 2813-2821
Author(s):  
PATRICIO GAETE

We consider the static quantum potential for a gauge theory which includes a light massive vector field interacting with the familiar U (1) QED photon via a Chern–Simons-like coupling, by using the gauge-invariant, but path-dependent, variables formalism. An exactly screening phase is then obtained, which displays a marked departure of a qualitative nature from massive axionic electrodynamics. The above static potential profile is similar to that encountered in axionic electrodynamics consisting of a massless axion-like field, as well as to that encountered in the coupling between the familiar U (1) QED photon and a second massive gauge field living in the so-called U (1)h hidden-sector, inside a superconducting box.


1990 ◽  
Vol 243 (3) ◽  
pp. 220-226 ◽  
Author(s):  
G.K. Leontaris ◽  
J. Rizos ◽  
K. Tamvakis
Keyword(s):  

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Brian Batell ◽  
Jared A. Evans ◽  
Stefania Gori ◽  
Mudit Rai

Abstract The proposed DarkQuest beam dump experiment, a modest upgrade to the existing SeaQuest/SpinQuest experiment, has great potential for uncovering new physics within a dark sector. We explore both the near-term and long-term prospects for observing two distinct, highly-motivated hidden sector benchmark models: heavy neutral leptons and Higgs-mixed scalars. We comprehensively examine the particle production and detector acceptance at DarkQuest, including an updated treatment of meson production, and light scalar production through both bremsstrahlung and gluon-gluon fusion. In both benchmark models, DarkQuest will provide an opportunity to probe previously inaccessible interesting regions of parameter space on a fairly short timescale when compared to other proposed experiments.


Sign in / Sign up

Export Citation Format

Share Document