scholarly journals Explicit soft supersymmetry breaking in the heterotic M-theory B − L MSSM

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anthony Ashmore ◽  
Sebastian Dumitru ◽  
Burt A. Ovrut

Abstract The strongly coupled heterotic M-theory vacuum for both the observable and hidden sectors of the B − L MSSM theory is reviewed, including a discussion of the “bundle” constraints that both the observable sector SU(4) vector bundle and the hidden sector bundle induced from a single line bundle must satisfy. Gaugino condensation is then introduced within this context, and the hidden sector bundles that exhibit gaugino condensation are presented. The condensation scale is computed, singling out one line bundle whose associated condensation scale is low enough to be compatible with the energy scales available at the LHC. The corresponding region of Kähler moduli space where all bundle constraints are satisfied is presented. The generic form of the moduli dependent F-terms due to a gaugino superpotential — which spontaneously break N = 1 supersymmetry in this sector — is presented and then given explicitly for the unique line bundle associated with the low condensation scale. The moduli-dependent coefficients for each of the gaugino and scalar field soft supersymmetry breaking terms are computed leading to a low-energy effective Lagrangian for the observable sector matter fields. We then show that at a large number of points in Kähler moduli space that satisfy all “bundle” constraints, these coefficients are initial conditions for the renormalization group equations which, at low energy, lead to completely realistic physics satisfying all phenomenological constraints. Finally, we show that a substantial number of these initial points also satisfy a final constraint arising from the quadratic Higgs-Higgs conjugate soft supersymmetry breaking term.

2002 ◽  
Vol 11 (08) ◽  
pp. 1159-1169 ◽  
Author(s):  
I. L. SHAPIRO

The stable version of the anomaly-induced inflation does not need a fine tuning to induce sufficient expansion of the Universe. The non-stable version (Starobinsky model) provides the graceful exit to the FRW phase. Here, we indicate the possibility of the inflation which is stable at the beginning and unstable at the end. The effect is due to the soft supersymmetry breaking and the decoupling of the massive sparticles at low energy.


2018 ◽  
Vol 182 ◽  
pp. 02005
Author(s):  
I. Antoniadis

I describe the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tuneable) positive cosmological constant. It utilises a single chiral multiplet with a gauged shift symmetry, that can be identified with the string dilaton (or an appropriate compactification modulus). The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms. We also study the question if this model can lead to inflation by identifying the dilaton with the inflaton. We find that this is possible if the Kähler potential is modified by a term that has the form of NS5-brane instantons, leading to an appropriate inflationary plateau around the maximum of the scalar potential, depending on two extra parameters.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 723
Author(s):  
Burt Ovrut

The compactification from the 11-dimensional Horava-Witten orbifold to 5-dimensional heterotic M-theory on a Schoen Calabi-Yau threefold is reviewed, as is the specific S U ( 4 ) vector bundle leading to the “heterotic standard model” in the observable sector. A generic formalism for a consistent hidden sector gauge bundle, within the context of strongly coupled heterotic M-theory, is presented. Anomaly cancellation and the associated bulk space 5-branes are discussed in this context. The further compactification to a 4-dimensional effective field theory on a linearized BPS double domain wall is then presented to order κ 11 4 / 3 . Specifically, the generic constraints required for anomaly cancellation and by the linearized domain wall solution, restrictions imposed by the vanishing of the D-terms and, finally, the constraints imposed by the necessity for positive, perturbative squared gauge couplings to this order are presented in detail.


1997 ◽  
Vol 12 (35) ◽  
pp. 2647-2653 ◽  
Author(s):  
Tianjun Li ◽  
D. V. Nanopoulos ◽  
Jorge L. Lopez

We propose a supergravity model that contains elements recently shown to arise in the strongly-coupled limit of the E8 × E8 heterotic string (M-theory), including a no-scale-like Kähler potential, the identification of the string scale with the gauge coupling unification scale, and the onset of supersymmetry breaking at an intermediate scale determined by the size of the 11th dimension of M-theory. We also study the phenomenological consequences of such scenario, which include a rather constrained sparticle spectrum within the reach of present-generation particle accelerators.


1986 ◽  
Vol 01 (03) ◽  
pp. 499-544 ◽  
Author(s):  
G.M. SHORE ◽  
G. VENEZIANO

The implications of supersymmetry and chiral Ward identities in supersymmetric gauge theories are explored using current algebra methods, and a critical assessment is made of the relative merits of the current algebra and effective Lagrangian approaches. Using the Ward identities directly, simple derivations are given of several important properties of the condensates in supersymmetric QCD, and of the generalized Dashen formulae. The corrections to these results in the presence of explicit, soft supersymmetry breaking are calculated. A concise formula is presented for the mass splittings within pseudo Goldstone multiplets induced by soft supersymmetry breaking terms. It is shown that if this supersymmetry breaking is the θ=0 component of a chiral superfield, the supertrace of the pseudo Goldstone masses vanishes. Using current algebra reduction formulae, the pseudo Goldstone masses are calculated in supersymmetric Yang-Mills theory, and supersymmetric QCD for NF<NC and NF=NC. Some differences are found between the current algebra and effective Lagrangian predictions, and their possible origins are discussed.


1988 ◽  
Vol 203 (4) ◽  
pp. 400-402 ◽  
Author(s):  
Parthasarathi Majumdar ◽  
Soumitra Sengupta

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
John Ellis ◽  
Jason L. Evans ◽  
Natsumi Nagata ◽  
Keith A. Olive ◽  
L. Velasco-Sevilla

AbstractWe explore the possible values of the $$\mu \rightarrow e \gamma $$ μ → e γ branching ratio, $$\text {BR}(\mu \rightarrow e\gamma )$$ BR ( μ → e γ ) , and the electron dipole moment (eEDM), $$d_e$$ d e , in no-scale SU(5) super-GUT models with the boundary conditions that soft supersymmetry-breaking matter scalar masses vanish at some high input scale, $$M_\mathrm{in}$$ M in , above the GUT scale, $$M_{\mathrm{GUT}}$$ M GUT . We take into account the constraints from the cosmological cold dark matter density, $$\Omega _{CDM} h^2$$ Ω CDM h 2 , the Higgs mass, $$M_h$$ M h , and the experimental lower limit on the lifetime for $$p \rightarrow K^+ \bar{\nu }$$ p → K + ν ¯ , the dominant proton decay mode in these super-GUT models. Reconciling this limit with $$\Omega _{CDM} h^2$$ Ω CDM h 2 and $$M_h$$ M h requires the Higgs field responsible for the charge-2/3 quark masses to be twisted, and possibly also that responsible for the charge-1/3 and charged-lepton masses, with model-dependent soft supersymmetry-breaking masses. We consider six possible models for the super-GUT initial conditions, and two possible choices for quark flavor mixing, contrasting their predictions for proton decay with versions of the models in which mixing effects are neglected. We find that $$\tau \left( p\rightarrow K^+ \bar{\nu }\right) $$ τ p → K + ν ¯ may be accessible to the upcoming Hyper-Kamiokande experiment, whereas all the models predict $$\text {BR}(\mu \rightarrow e\gamma )$$ BR ( μ → e γ ) and $$d_e$$ d e below the current and prospective future experimental sensitivities or both flavor choices, when the dark matter density, Higgs mass and current proton decay constraints are taken into account. However, there are limited regions with one of the flavor choices in two of the models where $$\mu \rightarrow e$$ μ → e conversion on a heavy nucleus may be observable in the future. Our results indicate that there is no supersymmetric flavor problem in the class of no-scale models we consider.


1998 ◽  
Vol 13 (37) ◽  
pp. 2999-3008 ◽  
Author(s):  
TAEKOON LEE ◽  
GUO-HONG WU

We show that the nonlinear supersymmetric effective Lagrangian can be used for model-independent parametrization of the light gravitino scattering amplitude at energies up to and above the soft supersymmetry-breaking masses. This provides the most convenient framework for systematic studies of goldstino phenomenology both at low energies and in high energy colliders.


2016 ◽  
Vol 26 (2) ◽  
pp. 111
Author(s):  
Tran Minh Hieu

The Randall-Sundrum solution to the hierarchy problem in the brane-world scenario has made a significant impact on the development of model building.We investigate in this paper a model of supersymmetry in a 5D spacetime with the Randal-Sundrum warped metric.The minimal supersymmetric extension of the standard model (MSSM) superfields propagate in the bulk between the UV and IR branes at separated orbifold fixed points, while the hidden sector in charge of supersymmetry breaking is confined on the UV brane.We derive the 4D effective action from the original 5D action of the underlying theory.The effective 4D Yukawa couplings and all the soft supersymmetry breaking terms are calculated in terms of the 5D theory's coefficients. We comment on the important role of the bulk mass parameter in the relation with the geometrical properties of particles.


1991 ◽  
Vol 06 (01) ◽  
pp. 41-58
Author(s):  
SOUMITRA SENGUPTA ◽  
PARTHASARATHI MAJUMDAR

The possibility of soft supersymmetry breaking at the tree level of string-inspired low energy supergravity theory is investigated. It is shown that the stringy quantum effects like the world sheet instanton and string loop effects can induce soft supersymmetry breakings at the tree level of the observable sector. Generic mass terms and trilinear soft breaking terms that arise are calculated.


Sign in / Sign up

Export Citation Format

Share Document