scholarly journals Self-powered resonant frequency tuning for Piezoelectric Vibration Energy Harvesters

2013 ◽  
Vol 476 ◽  
pp. 012069 ◽  
Author(s):  
B Ahmed-Seddik ◽  
G Despesse ◽  
S Boisseau ◽  
E Defay
2020 ◽  
Vol 4 (2) ◽  
pp. 39
Author(s):  
Sreekumari Raghavan ◽  
Rishi Gupta

The need for energy harvesters for various applications, including structural health monitoring (SHM) in remote and inaccessible areas, is well established. Energy harvesters can utilize the ambient vibration of the body on which they are mounted to generate energy, thus eliminating the need for an external source of power. One such type of harvester is designed using piezoelectric materials and using a cantilever type set-up. However, the challenge associated with cantilever-based Piezoelectric Vibration Energy Harvesters (PVEH) is that its output power reduces when the ambient vibration frequency deviates from the resonant frequency of the harvester. This calls for a mechanism to tune its resonant frequency to match with the ambient frequency. This article presents an innovative design of an electrically tunable PVEH. The PVEH is integrated with an Ionic Polymer Metal Composite (IPMC) as an actuator that loads the cantilever beam, changing the stiffness of the beam. IPMC utilizes low power, and the authors demonstrate in this paper that a net gain of power can be achieved by this novel design. For the configuration used, it is experimentally proven that a frequency shift from 5.9 Hz to 8 Hz is achieved with three actuation values. Typical power output from the harvester is 52.03 µW when the power spent on actuation is only 0.765 µW. On-going modeling of this system using simulation software is expected to lead to further optimization and prototyping of design.


Author(s):  
Sondipon Adhikari ◽  
Arnab Banerjee

Piezoelectric vibration energy harvesters have demonstrated the potential for sustainable energy generation from diverse ambient sources in the context of low-powered micro-scale systems. However, challenges remain concerning harvesting more power from low-frequency input excitations and broadband random excitations. To address this, here we propose a purely mechanical approach by employing inertial amplifiers with cantilever piezoelectric vibration energy harvesters. The proposed mechanism can achieve inertial amplification amounting to orders of magnitude under certain conditions. Harmonic, as well as broadband random excitations, are considered. Two types of harvesting circuits, namely, without and with an inductor, have been employed. We explicitly demonstrate how different parameters describing the inertial amplifiers should be optimally tuned to maximise harvested power under different types of excitations and circuit configurations. It is possible to harvest five times more power at a 50% lower frequency when the ambient excitation is harmonic. Under random broadband ambient excitations, it is possible to harvest 10 times more power with optimally selected parameters.


Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1584 ◽  
Author(s):  
Abdul Alameh ◽  
Mathieu Gratuze ◽  
Mohannad Elsayed ◽  
Frederic Nabki

Sign in / Sign up

Export Citation Format

Share Document