scholarly journals Simulations on the measurement of the Ds meson semileptonic form factor with the PANDA detector

2014 ◽  
Vol 503 ◽  
pp. 012024
Author(s):  
Lu Cao ◽  
James Ritman
Keyword(s):  
Ds Meson ◽  
2019 ◽  
Vol 34 (30) ◽  
pp. 1950194 ◽  
Author(s):  
Ning Li ◽  
Ya-Jie Wu

We investigate the electromagnetic form factor of [Formula: see text] meson using [Formula: see text] twisted mass lattice quantum chromodynamics gauge configurations. The numerical simulations are carried out under twisted boundary conditions which are helpful to increase the resolution in momentum space. We determine electromagnetic form factors with more small four-momentum transfer, and further fit the charge radius for [Formula: see text] meson.


Author(s):  
T. Geipel ◽  
W. Mader ◽  
P. Pirouz

Temperature affects both elastic and inelastic scattering of electrons in a crystal. The Debye-Waller factor, B, describes the influence of temperature on the elastic scattering of electrons, whereas the imaginary part of the (complex) atomic form factor, fc = fr + ifi, describes the influence of temperature on the inelastic scattering of electrons (i.e. absorption). In HRTEM simulations, two possible ways to include absorption are: (i) an approximate method in which absorption is described by a phenomenological constant, μ, i.e. fi; - μfr, with the real part of the atomic form factor, fr, obtained from Hartree-Fock calculations, (ii) a more accurate method in which the absorptive components, fi of the atomic form factor are explicitly calculated. In this contribution, the inclusion of both the Debye-Waller factor and absorption on HRTEM images of a (Oll)-oriented GaAs crystal are presented (using the EMS software.Fig. 1 shows the the amplitudes and phases of the dominant 111 beams as a function of the specimen thickness, t, for the cases when μ = 0 (i.e. no absorption, solid line) and μ = 0.1 (with absorption, dashed line).


1982 ◽  
Vol 43 (C7) ◽  
pp. C7-273-C7-278 ◽  
Author(s):  
P. Burlet ◽  
J. X. Boucherle ◽  
J. Rossat-Mignod ◽  
J. W. Cable ◽  
W. C. Koehler ◽  
...  

1982 ◽  
Vol 43 (C7) ◽  
pp. C7-263-C7-271 ◽  
Author(s):  
J. X. Boucherle ◽  
D. Ravot ◽  
J. Schweizer
Keyword(s):  

1982 ◽  
Vol 43 (C7) ◽  
pp. C7-253-C7-256
Author(s):  
H. Fuess ◽  
R. Müller ◽  
D. Schwabe ◽  
F. Tasset

Author(s):  
Kendall Scott Wills ◽  
Omar Diaz de Leon ◽  
Kartik Ramanujachar ◽  
Charles P. Todd

Abstract In the current generations of devices the die and its package are closely integrated to achieve desired performance and form factor. As a result, localization of continuity failures to either the die or the package is a challenging step in failure analysis of such devices. Time Domain Reflectometry [1] (TDR) is used to localize continuity failures. However the accuracy of measurement with TDR is inadequate for effective localization of the failsite. Additionally, this technique does not provide direct 3-Dimenstional information about the location of the defect. Super-conducting Quantum Interference Device (SQUID) Microscope is useful in localizing shorts in packages [2]. SQUID microscope can localize defects to within 5um in the X and Y directions and 35um in the Z direction. This accuracy is valuable in precise localization of the failsite within the die, package or the interfacial region in flipchip assemblies.


2000 ◽  
Vol 89 (1) ◽  
pp. 4
Author(s):  
A. N. Khoperskiı̆
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document