scholarly journals Auger Electron Spectroscopy in high vacuum: Nanocharacterisation in the Scanning Electron Microscope

2014 ◽  
Vol 522 ◽  
pp. 012027 ◽  
Author(s):  
Xiaoping Zha ◽  
Christopher G H Walker ◽  
Mohamed El-Gomati
1998 ◽  
Vol 53 (8) ◽  
pp. 679-683 ◽  
Author(s):  
Y. Waseda ◽  
S. Suzuki ◽  
K. Urbanb

Abstract This paper deals with the morphology and surface chemistry of faceted voids existing in singlequasicrystalline icosahedral Al70.5Pd21.0Mn8.5. By observation with a scanning electron microscope of surfaces obtained by cleavage of the quasicrystal, the habit planes of the dodecahedral voids were identified. The chemical surface composition of the void surface was determined by Auger electron spectroscopy after cleavage in ultra-high vacuum.


1973 ◽  
Vol 1 (3) ◽  
pp. 194 ◽  
Author(s):  
SF Etris ◽  
VK Sisca ◽  
KC Lieb ◽  
IC Moore ◽  
AL Batik ◽  
...  

Author(s):  
G.D. Danilatos

The environmental scanning electron microscope (ESEM) has evolved as the natural extension of the scanning electron microscope (SEM), both historically and technologically. ESEM allows the introduction of a gaseous environment in the specimen chamber, whereas SEM operates in vacuum. One of the detection systems in ESEM, namely, the gaseous detection device (GDD) is based on the presence of gas as a detection medium. This might be interpreted as a necessary condition for the ESEM to remain operational and, hence, one might have to change instruments for operation at low or high vacuum. Initially, we may maintain the presence of a conventional secondary electron (E-T) detector in a "stand-by" position to switch on when the vacuum becomes satisfactory for its operation. However, the "rough" or "low vacuum" range of pressure may still be considered as inaccessible by both the GDD and the E-T detector, because the former has presumably very small gain and the latter still breaks down.


Author(s):  
R. B. Neder ◽  
M. Burghammer ◽  
Th. Grasl ◽  
H. Schulz

AbstractWe developed a new micro manipulator for mounting individual sub-micrometer sized single crystals within a scanning electron microscope. The translations are realized via a commercially available piezomicroscope, adapted for high vacuum usage and realize nanometer resolution. With this novel instrument it is routinely possible to mount individual single crystals with sizes down to 0.1


1993 ◽  
Vol 1 (8) ◽  
pp. 5-6
Author(s):  
Anthony D. Buonaquisti

Pressure scales can be extremely confusing to new operators. This is not surprising. To my mind, there are three primary areas of confusion.Firstly, the pressure of gas inside an instrument changes over many orders of magnitude during pumpdown. The change is about 9 orders of magnitude for a traditional Scanning Electron Microscope and about 13 orders of magnitude for an ultra-high vacuum instrument such as a Scanning Auger Microprobe.To give an idea about the scale of change involved in vacuum, consider that the change in going from ambient pressure to that inside a typical ultra high vacuum system is like comparing one meter with the mean radius of the planet Pluto's orbit. The fact is that we don't often get to play with things on that scale. As a consequence, many of us have to keep reminding ourselves that 1 X 10-3 is one thousand times the value of 1 X 10-6 - not twice the value.


Sign in / Sign up

Export Citation Format

Share Document