scholarly journals In-situ-measurement of the friction coefficient in the deep drawing process

2017 ◽  
Vol 896 ◽  
pp. 012027
Author(s):  
V. Recklin ◽  
F. Dietrich ◽  
P. Groche
2020 ◽  
Vol 846 ◽  
pp. 117-121
Author(s):  
Min Sik Lee ◽  
Jun Park ◽  
J.S.Suresh Babu ◽  
Chung Gil Kang

In this paper, hot and cold deep drawing processes are determined with direct deep drawing process and indirect deep drawing process. To predict the friction coefficient, the finite-element method, which can predict deformation behavior until the fracture of a blank sheet, was proposed using the forming limit diagram (FLD) curve. The effect of fracturing of the coating layer on the friction coefficient during the hot and cold deep drawing processes was investigated. The deformation behavior of the coating layer of the boron steel sheet that affects the friction coefficient in the hot and cold deep drawing processes was also proposed. A forming method that can control the surface condition of the formed product is further proposed by explaining the fracture of the coating due to the forming process.


2012 ◽  
Vol 249-250 ◽  
pp. 51-58
Author(s):  
Qing Wen Qu ◽  
Tian Ke Sun ◽  
Shao Qing Wang ◽  
Hong Juan Yu ◽  
Fang Li

A simulation of deep drawing process on the sheet metal was done by using Dynaform, the influence of blank holder force, deep drawing speed and friction coefficient on the forming speed of sheet metal in the deep drawing process were got. The forming speed of sheet metal determines the quality of deep drawing, in the deep drawing process the blank holder force and the deep drawing speed are controllable parameters, the friction coefficient can be intervened and controlled, and it’s a manifestation of the interaction of all parameters, the main factors which influence the friction coefficient just have blank holder force, deep drawing speed and lubrication except the material. The conclusion of this study provides the basic data for the analysis of the lubrication of mould, the study of lubricant and the prediction of the service life of deep drawing die.


Author(s):  
Iman Rostamsowlat ◽  
Ahmad Afsari ◽  
Maziar Janghorban

In this paper, effects of friction coefficient and tool geometry on the thickness variations of a cylindrical cup were studied. Blank is made of SPXI250 alloy sheet which was analyzed by Finite Element Method (FEM). This not been studied yet. Finite Element modeling of the deep drawing process was conducted using ABAQUS/EXPLICIT software. A set of appropriate die and punch were designed for experimental tests. The results of the simulation showed that a change in the friction coefficient of the die-blank interface leads to a significant changes in the cup thickness. Moreover, the results revealed that the influence of die nose radius on the final cup thickness variations is greater than that of the punch nose radius. The simulation results of this study were compared with the experimental results and those of the other investigators’. The comparisons of the experimental and simulation results with those of the other researchers were so satisfactory.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3993
Author(s):  
Thanh Trung Do ◽  
Pham Son Minh ◽  
Nhan Le

The formability of the drawn part in the deep drawing process depends not only on the material properties, but also on the equipment used, metal flow control and tool parameters. The most common defects can be the thickening, stretching and splitting. However, the optimization of tools including the die and punch parameters leads to a reduction of the defects and improves the quality of the products. In this paper, the formability of the camera cover by aluminum alloy A1050 in the deep drawing process was examined relating to the tool geometry parameters based on numerical and experimental analyses. The results showed that the thickness was the smallest and the stress was the highest at one of the bottom corners where the biaxial stretching was the predominant mode of deformation. The problems of the thickening at the flange area, the stretching at the side wall and the splitting at the bottom corners could be prevented when the tool parameters were optimized that related to the thickness and stress. It was clear that the optimal thickness distribution of the camera cover was obtained by the design of tools with the best values—with the die edge radius 10 times, the pocket radius on the bottom of the die 5 times, and the punch nose radius 2.5 times the sheet thickness. Additionally, the quality of the camera cover was improved with a maximum thinning of 25% experimentally, and it was within the suggested maximum allowable thickness reduction of 45% for various industrial applications after optimizing the tool geometry parameters in the deep drawing process.


Author(s):  
Hamidreza Gharehchahi ◽  
Mohammad Javad Kazemzadeh-Parsi ◽  
Ahmad Afsari ◽  
Mehrdad Mohammadi

1993 ◽  
Vol 115 (2) ◽  
pp. 224-229 ◽  
Author(s):  
K. Yamaguchi ◽  
K. Kanayama ◽  
M. H. Parsa ◽  
N. Takakura

A new deep drawing process of sheet metals is developed to facilitate small-lot production of deep cups with large drawing ratio. In this process, unlike the conventional deep drawing method, a few drawn cups are always stacked on the punch and used as a part of punch for the subsequent deep drawing of a given blank. Before drawing a new blank, a drawn cup which is in contact with the punch is stripped off. The repetition of such stripping and drawing operations makes it possible to carry out both the first-stage drawing and the subsequent slight redrawings in one drawing operation using only one pair of punch and die. In this paper, this new deep drawing process is applied to the production of tapered cups and the main feature of the process is shown.


Sign in / Sign up

Export Citation Format

Share Document