scholarly journals Exchange interactions and magnetic properties of hexagonal rare-earth-cobalt compounds

2018 ◽  
Vol 994 ◽  
pp. 012007 ◽  
Author(s):  
E. Burzo
2019 ◽  
Vol 61 (1) ◽  
pp. 81 ◽  
Author(s):  
С.А. Лушников ◽  
И.С. Терешина ◽  
В.Н. Вербецкий

AbstractThe magnetic properties of intermetallic compounds GdNi_0.98Si_0.02 and DyNi_0.95Si_0.05 and hydrides based on them have been studied. It is found that a partial substitution of Si atoms for Ni atoms does not cause significant changes in the magnetic characteristics such as the Curie temperature. At the same time, incorporation of hydrogen into the crystal lattice of the GdNi_0.98Si_0.02 and DyNi_0.95Si_0.05 compounds leads to significant decrease in the Curie temperature, attenuation of exchange interactions due to significant increase in the unit cell volume (more than 20%), and an increase in the distances between magnetoactive ions. The magnetism of the initial and also hydrogenated compositions are mainly determined by the contribution from the subsystem of the rare-earth ions.


2020 ◽  
Vol 34 (04) ◽  
pp. 2050006
Author(s):  
E. Burzo

Starting from band structure calculations and 4f–5d–3d exchange interaction model, the magnetic properties of [Formula: see text], [Formula: see text], [Formula: see text] and both rhombohedral and hexagonal [Formula: see text] series are analyzed. The complex and interdependent exchange interactions, within the spatial extent of the unit cell, are mediated by the R5d band polarizations, [Formula: see text]. The Curie temperatures of the analyzed series show linear dependences, with the same rate for both light and heavy rare-earth compounds, when plotting as function of [Formula: see text] values. The effects of substitutions at R and Co sites are discussed in correlation with changes in R5d band polarizations.


2004 ◽  
Vol 848 ◽  
Author(s):  
Andriy V. Tkachuk ◽  
Shane J. Crerar ◽  
Xing Wu ◽  
Craig P. T. Muirhead ◽  
Laura Deakin ◽  
...  

ABSTRACTTernary rare-earth transition-metal antimonides RExMySbz have provided fertile ground for discovering materials with varied electrical and magnetic properties such as superconductivity and ferromagnetism. The properties of two important classes of these compounds, RE3TiSb5 and RECrSb3, have been previously investigated. These studies have now been extended to RE3MSb5 (M = Zr, Hf), which show anomalies in their resistivity curves suggestive of electronic transitions, and YbCrSb3, which undergoes long-range magnetic ordering at 285 K, the highest Tc observed so far of all RECrSb3 members. Strong magnetic exchange interactions develop through coupling of f and d electrons in these compounds. The substitution of uranium for rare earth in RE3MSb5 results in the compounds U3MSb5 (M = Zr, Hf, Nb), which also display prominent transitions in their electrical resistivity and magnetic susceptibility curves.


1996 ◽  
Vol 35 (Part 1, No. 12A) ◽  
pp. 6057-6064 ◽  
Author(s):  
Fumio Maruyama ◽  
Hiroyuki Nagai ◽  
Yasushi Amako ◽  
Hiroshi Yoshie ◽  
Kengo Adachi

2020 ◽  
Vol 10 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Muhammad Hanif bin Zahari ◽  
Beh Hoe Guan ◽  
Lee Kean Chuan ◽  
Afiq Azri bin Zainudin

Background: Rare earth materials are known for its salient electrical insulation properties with high values of electrical resistivity. It is expected that the substitution of rare earth ions into spinel ferrites could significantly alter its magnetic properties. In this work, the effect of the addition of Samarium ions on the structural, morphological and magnetic properties of Ni0.5Zn0.5SmxFe2-xO4 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) synthesized using sol-gel auto combustion technique was investigated. Methods: A series of Samarium-substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5SmxFe2-xO4 where x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by sol-gel auto-combustion technique. Structural, morphological and magnetic properties of the samples were examined through X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and Vibrating Sample Magnetometer (VSM) measurements. Results: XRD patterns revealed single-phased samples with spinel cubic structure up to x= 0.04. The average crystallite size of the samples varied in the range of 41.8 – 85.6 nm. The prepared samples exhibited agglomerated particles with larger grain size observed in Sm-substituted Ni-Zn ferrite as compared to the unsubstituted sample. The prepared samples exhibited typical soft magnetic behavior as evidenced by the small coercivity field. The magnetic saturation, Ms values decreased as the Sm3+ concentration increases. Conclusion: The substituted Ni-Zn ferrites form agglomerated particles inching towards more uniform microstructure with each increase in Sm3+ substitution. The saturation magnetization of substituted samples decreases with the increase of samarium ion concentration. The decrease in saturation magnetization can be explained based on weak super exchange interaction between A and B sites. The difference in magnetic properties between the samples despite the slight difference in Sm3+ concentrations suggests that the properties of the NiZnFe2O4 can be ‘tuned’, depending on the present need, through the substitution of Fe3+ with rare earth ions.


Sign in / Sign up

Export Citation Format

Share Document