scholarly journals Reflectivity of VUV-sensitive silicon photomultipliers in liquid Xenon

2021 ◽  
Vol 16 (08) ◽  
pp. P08002
Author(s):  
M. Wagenpfeil ◽  
T. Ziegler ◽  
J. Schneider ◽  
A. Fieguth ◽  
M. Murra ◽  
...  
2018 ◽  
Vol 13 (10) ◽  
pp. P10022-P10022 ◽  
Author(s):  
L. Baudis ◽  
M. Galloway ◽  
A. Kish ◽  
C. Marentini ◽  
J. Wulf

2018 ◽  
Vol 13 (03) ◽  
pp. C03041-C03041 ◽  
Author(s):  
B. Godfrey ◽  
T. Anderson ◽  
E. Breedon ◽  
J. Cutter ◽  
N. Dhaliwal ◽  
...  

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Laura Baudis ◽  
Patricia Sanchez-Lucas ◽  
Kevin Thieme

AbstractDetectors using liquid xenon as target are widely deployed in rare event searches. Conclusions on the interacting particle rely on a precise reconstruction of the deposited energy which requires calibrations of the energy scale of the detector by means of radioactive sources. However, a microscopic calibration, i.e. the translation from the number of excitation quanta into deposited energy, also necessitates good knowledge of the energy required to produce single scintillation photons or ionisation electrons in liquid xenon. The sum of these excitation quanta is directly proportional to the deposited energy in the target. The proportionality constant is the mean excitation energy and is commonly known as W-value. Here we present a measurement of the W-value with electronic recoil interactions in a small dual-phase xenon time projection chamber with a hybrid (photomultiplier tube and silicon photomultipliers) photosensor configuration. Our result is based on calibrations at $$\mathcal {O}(1{-}10\,{\hbox {keV}})$$ O ( 1 - 10 keV ) with internal $${^{37}\hbox {Ar}}$$ 37 Ar and $${^{83\text {m}}\hbox {Kr}}$$ 83 m Kr sources and single electron events. We obtain a value of $$W={11.5}{} \, ^{+0.2}_{-0.3} \, \mathrm {(syst.)} \, \hbox {eV}$$ W = 11.5 - 0.3 + 0.2 ( syst . ) eV , with negligible statistical uncertainty, which is lower than previously measured at these energies. If further confirmed, our result will be relevant for modelling the absolute response of liquid xenon detectors to particle interactions.


Author(s):  
Mst Shamim Ara Shawkat ◽  
Md Sakib Hasan ◽  
Nicole McFarlane

Instruments ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 18
Author(s):  
Fabio Acerbi ◽  
Anurag Behera ◽  
Alberto Dalla Mora ◽  
Laura Di Sieno ◽  
Alberto Gola

Silicon photomultipliers (SiPM) are pixelated single-photon detectors combining high sensitivity, good time resolution and high dynamic range. They are emerging in many fields, such as time-domain diffuse optics (TD-DO). This is a promising technique in neurology, oncology, and quality assessment of food, wood, and pharmaceuticals. SiPMs can have very large areas and can significantly increase the sensitivity of TD-DO in tissue investigation. However, such improvement is currently limited by the high detector noise and the worsening of SiPM single-photon time resolution due to the large parasitic capacitances. To overcome such limitation, in this paper, we present two single-photon detection modules, based on 6 × 6 mm2 and 10 × 10 mm2 SiPMs, housed in vacuum-sealed TO packages, cooled to −15 °C and −36 °C, respectively. They integrate front-end amplifiers and temperature controllers, being very useful instruments for TD-DO and other biological and physical applications. The signal extraction from the SiPM was improved. The noise is reduced by more than two orders of magnitude compared to the room temperature level. The full suitability of the proposed detectors for TD-DO measurements is outside the scope of this work, but preliminary tests were performed analyzing the shape and the stability of the Instrument Response Function. The proposed modules are thus fundamental building blocks to push the TD-DO towards deeper investigations inside the body.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Julien Salvadori ◽  
Freddy Odille ◽  
Gilles Karcher ◽  
Pierre-Yves Marie ◽  
Laetitia Imbert

Abstract Purpose Digital PET involving silicon photomultipliers (SiPM) provides an enhanced time-of-flight (TOF) resolution as compared with photomultiplier (PMT)-based PET, but also a better prevention of the count-related rises in dead time and pile-up effects mainly due to smaller trigger domains (i.e., the detection surfaces associated with each trigger circuit). This study aimed to determine whether this latter property could help prevent against deteriorations in TOF resolution and TOF image quality in the wide range of PET count rates documented in clinical routine. Methods Variations, according to count rates, in timing resolution and in TOF-related enhancement of the quality of phantom images were compared between the first fully digital PET (Vereos) and a PMT-based PET (Ingenuity). Single-count rate values were additionally extracted from the list-mode data of routine analog- and digital-PET exams at each 500-ms interval, in order to determine the ranges of routine PET count rates. Results Routine PET count rates were lower for the Vereos than for the Ingenuity. For Ingenuity, the upper limits were estimated at approximately 21.7 and 33.2 Mcps after injection of respectively 3 and 5 MBq.kg-1 of current 18F-labeled tracers. At 5.8 Mcps, corresponding to the lower limit of the routine count rates documented with the Ingenuity, timing resolutions provided by the scatter phantom were 326 and 621 ps for Vereos and Ingenuity, respectively. At higher count rates, timing resolution was remarkably stable for Vereos but exhibited a progressive deterioration for Ingenuity, respectively reaching 732 and 847 ps at the upper limits of 21.7 and 33.2 Mcps. The averaged TOF-related gain in signal/noise ratio was stable at approximately 2 for Vereos but decreased from 1.36 at 5.8 Mcps to 1.14 and 1.00 at respectively 21.7 and 33.2 Mcps for Ingenuity. Conclusion Contrary to the Ingenuity PMT-based PET, the Vereos fully digital PET is unaffected by any deterioration in TOF resolution and consequently, in the quality of TOF images, in the wide range of routine PET count rates. This advantage is even more striking with higher count-rates for which the preferential use of digital PET should be further recommended (i.e., dynamic PET recording, higher injected activities).


Author(s):  
F. LePort ◽  
A. Pocar ◽  
L. Bartoszek ◽  
R. DeVoe ◽  
P. Fierlinger ◽  
...  

Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Matthew Szydagis ◽  
Grant A. Block ◽  
Collin Farquhar ◽  
Alexander J. Flesher ◽  
Ekaterina S. Kozlova ◽  
...  

Detectors based upon the noble elements, especially liquid xenon as well as liquid argon, as both single- and dual-phase types, require reconstruction of the energies of interacting particles, both in the field of direct detection of dark matter (weakly interacting massive particles WIMPs, axions, etc.) and in neutrino physics. Experimentalists, as well as theorists who reanalyze/reinterpret experimental data, have used a few different techniques over the past few decades. In this paper, we review techniques based on solely the primary scintillation channel, the ionization or secondary channel available at non-zero drift electric fields, and combined techniques that include a simple linear combination and weighted averages, with a brief discussion of the application of profile likelihood, maximum likelihood, and machine learning. Comparing results for electron recoils (beta and gamma interactions) and nuclear recoils (primarily from neutrons) from the Noble Element Simulation Technique (NEST) simulation to available data, we confirm that combining all available information generates higher-precision means, lower widths (energy resolution), and more symmetric shapes (approximately Gaussian) especially at keV-scale energies, with the symmetry even greater when thresholding is addressed. Near thresholds, bias from upward fluctuations matters. For MeV-GeV scales, if only one channel is utilized, an ionization-only-based energy scale outperforms scintillation; channel combination remains beneficial. We discuss here what major collaborations use.


Sign in / Sign up

Export Citation Format

Share Document