scholarly journals Development of an FPGA-based realtime DAQ system for axion haloscope experiments

2021 ◽  
Vol 16 (11) ◽  
pp. T11008
Author(s):  
M.J. Lee ◽  
B.R. Ko ◽  
S. Ahn

Abstract A real-time Data Acquisition (DAQ) system for the CULTASK axion haloscope experiment was constructed and tested. The CULTASK is an experiment to search for cosmic axions using resonant cavities, to detect photons from axion conversion through the inverse Primakoff effect in a few GHz frequency range in a very high magnetic field and at an ultra low temperature. The constructed DAQ system utilizes a Field Programmable Gate Array (FPGA) for data processing and Fast Fourier Transformation. This design along with a custom Ethernet packet designed for real-time data transfer enables 100% DAQ efficiency, which is the key feature compared with a commercial spectrum analyzer. This DAQ system is optimally designed for RF signal detection in the axion experiment, with 100 Hz frequency resolution and 500 kHz analysis window. The noise level of the DAQ system averaged over 100,000 measurements is around -111.7 dBm. From a pseudo-data analysis, an improvement of the signal-to-noise ratio due to repeating and averaging the measurements using this real-time DAQ system was confirmed.

Author(s):  
Manjunath Ramachandra

The data being transferred over the supply chain has to compete with the increasing applications around the web, throwing open the challenge of meeting the constraint of in-time data transfers with the available resources. It often leads to flooding of resources, resulting in the wastage of time and loss of data. Most of the applications around the customer require real time data transfer over the web to enable right decisions. To make it happen, stringent constraints are required to be imposed on the quality of the transfer. This chapter provides the mechanism for shaping of traffic flows towards sharing the existing infrastructure.


2004 ◽  
Vol 23 (6) ◽  
pp. 592-597
Author(s):  
Hugh Nicholson ◽  
Per Gunnar Folstad ◽  
Terje A. Pedersen

2017 ◽  
Vol 12 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Deniss Brodņevs ◽  
Aleksandrs Kutins

Abstract An expanding mobile cellular network data transfer service offers cheaper wireless solutions for various data transfer needs. This paper presents an experimental testing of data transfer performance in 3G and 4G modes. The purpose of testing was to check the possibility of real-time and critical data transfer over the mobile cellular networks. The testing was performed in Riga in July and August 2016 using the most popular mobile service operators in Latvia: Tele2-LV, BITE-LV and LMT. The testing confirmed that the overload of Riga’s 4G networks causes serious service deterioration or even interruption. Riga’s 3G networks are more stable. However, 3G network service quality depends on a cell load. Lightly loaded 3G network meets real-time data transfer requirements of 100 ms one-way delay of the small packet traffic.


Sign in / Sign up

Export Citation Format

Share Document