Negative capacitance devices: sensitivity analyses of the developed TCAD ferroelectric model for HZO

2022 ◽  
Vol 17 (01) ◽  
pp. C01048
Author(s):  
A. Morozzi ◽  
M. Hoffmann ◽  
R. Mulargia ◽  
S. Slesazeck ◽  
E. Robutti

Abstract This work aims to investigate the suitability of innovative negative capacitance (NC) devices to be used in High Energy Physics experiments detection systems, featuring self-amplified, segmented, high granularity detectors. Within this framework, MFM (Metal-Ferroelectric-Metal) and MFIM (Metal-Ferroelectric-Insulator-Metal) structures have been investigated within the Technology-CAD environment. The strength of this approach is to exploit the behavior of a simple capacitor to accurately ad-hoc customize the TCAD library aiming at realistically modeling the polarization properties of devices fabricated with ferroelectric materials. The comparison between simulations and measurements in terms of polarization as a function of the applied electric field for both MFM and MFIM devices has been used for modeling and methodologies validation purposes. The analyses and results obtained for MFIM capacitors can be straightforwardly extended to the study of NC-FETs. This work would support the use of the TCAD modeling approach as a predictive tool to optimize the design and the operation of the new generation NC-FET devices for the future High Energy Physics experiments in the HL-LHC scenario. The NC working principle will be employed for particle detection applications in order to exceed the limits imposed by current CMOS technology in terms of power consumption, signal detectability and switching speed.

2004 ◽  
Vol 14 (02) ◽  
pp. 379-399 ◽  
Author(s):  
F. FACCIO

With the construction of the Large Hadron Collider at the European Center for Nuclear Research (CERN), the radiation levels at large High Energy Physics (HEP) experiments are significantly increased with respect to past experience. The approach the HEP community is using to ensure radiation tolerance of the electronics installed in these new generation experiments is described. Particular attention is devoted to developments that led to original work: the estimate of the SEU rate in the complex LHC radiation environment and the use of hardness by design techniques to achieve radiation hardness of ASICs in a commercial CMOS technology.


Author(s):  
Preeti Kumari ◽  
◽  
Kavita Lalwani ◽  
Ranjit Dalal ◽  
Ashutosh Bhardwaj ◽  
...  

2005 ◽  
Vol 20 (16) ◽  
pp. 3874-3876 ◽  
Author(s):  
B. Abbott ◽  
P. Baringer ◽  
T. Bolton ◽  
Z. Greenwood ◽  
E. Gregores ◽  
...  

The DØ experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of DØ collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in DØ by developing a grid in the DØ Southern Analysis Region (DØSAR), DØSAR-Grid, using all available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the DØSAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.


2017 ◽  
Vol 12 (12) ◽  
pp. P12004-P12004 ◽  
Author(s):  
F. Arteche ◽  
C. Rivetta ◽  
M. Iglesias ◽  
I. Echeverria ◽  
A. Pradas ◽  
...  

1994 ◽  
Vol 348 ◽  
Author(s):  
E. Auffray ◽  
I. Dafinei ◽  
P. Lecoq ◽  
M. Schneegans

ABSTRACTCerium fluoride offers a reasonable compromise between parameters like the density, the light yield, the scintillation characteristics (particularly the decay time) and the radiation hardness, and is considered today as the best candidate for large electromagnetic calorimeters in future High Energy Physics experiments. Details on the performances of large crystals produced by different manufacturers all over the world and measured by the Crystal Clear collaboration will be shown and the usefulness of a good collaboration between the industry and the users will be highlighted by some examples on the light yield and radiation hardness improvement.


Sign in / Sign up

Export Citation Format

Share Document