RADIATION ISSUES IN THE NEW GENERATION OF HIGH ENERGY PHYSICS EXPERIMENTS

2004 ◽  
Vol 14 (02) ◽  
pp. 379-399 ◽  
Author(s):  
F. FACCIO

With the construction of the Large Hadron Collider at the European Center for Nuclear Research (CERN), the radiation levels at large High Energy Physics (HEP) experiments are significantly increased with respect to past experience. The approach the HEP community is using to ensure radiation tolerance of the electronics installed in these new generation experiments is described. Particular attention is devoted to developments that led to original work: the estimate of the SEU rate in the complex LHC radiation environment and the use of hardness by design techniques to achieve radiation hardness of ASICs in a commercial CMOS technology.

2021 ◽  
Vol 9 ◽  
Author(s):  
N. Demaria

The High Luminosity Large Hadron Collider (HL-LHC) at CERN will constitute a new frontier for the particle physics after the year 2027. Experiments will undertake a major upgrade in order to stand this challenge: the use of innovative sensors and electronics will have a main role in this. This paper describes the recent developments in 65 nm CMOS technology for readout ASIC chips in future High Energy Physics (HEP) experiments. These allow unprecedented performance in terms of speed, noise, power consumption and granularity of the tracking detectors.


Physics ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 455-480
Author(s):  
Airton Deppman ◽  
Eugenio Megías ◽  
Débora P. P. Menezes

In this work, we provide an overview of the recent investigations on the non-extensive Tsallis statistics and its applications to high energy physics and astrophysics, including physics at the Large Hadron Collider (LHC), hadron physics, and neutron stars. We review some recent investigations on the power-law distributions arising in high energy physics experiments focusing on a thermodynamic description of the system formed, which could explain the power-law behavior. The possible connections with a fractal structure of hadrons is also discussed. The main objective of the present work is to delineate the state-of-the-art of those studies and show some open issues that deserve more careful investigation. We propose several possibilities to test the theory through analyses of experimental data.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 678
Author(s):  
Patryk Chaber ◽  
Paweł D. Domański ◽  
Daniel Dąbrowski ◽  
Maciej Ławryńczuk ◽  
Robert Nebeluk ◽  
...  

The digital twins technology delivers a new degree of freedom into system implementation and maintenance practice. Using this approach, a technological system can be efficiently modeled and simulated. Furthermore, such a twin offline system can be efficiently used to investigate real system issues and improvement opportunities, e.g., improvement of the existing control system or development of a new one. This work describes the development of a control system using the digital twins methodology for a gas system delivering a specific mixture of gases to the time-of-flight (ToF) multipurpose detector (MPD) used during high-energy physics experiments in the Joint Institute for Nuclear Research (Dubna, Russia). The gas system digital twin was built using a test stand and further extended into target full-scale installation planned to be built in the near future. Therefore, conducted simulations are used to validate the existing system and to allow validation of the planned new system. Moreover, the gas system digital twin enables testing of new control opportunities, improving the operation of the target gas system.


2022 ◽  
Vol 17 (01) ◽  
pp. C01048
Author(s):  
A. Morozzi ◽  
M. Hoffmann ◽  
R. Mulargia ◽  
S. Slesazeck ◽  
E. Robutti

Abstract This work aims to investigate the suitability of innovative negative capacitance (NC) devices to be used in High Energy Physics experiments detection systems, featuring self-amplified, segmented, high granularity detectors. Within this framework, MFM (Metal-Ferroelectric-Metal) and MFIM (Metal-Ferroelectric-Insulator-Metal) structures have been investigated within the Technology-CAD environment. The strength of this approach is to exploit the behavior of a simple capacitor to accurately ad-hoc customize the TCAD library aiming at realistically modeling the polarization properties of devices fabricated with ferroelectric materials. The comparison between simulations and measurements in terms of polarization as a function of the applied electric field for both MFM and MFIM devices has been used for modeling and methodologies validation purposes. The analyses and results obtained for MFIM capacitors can be straightforwardly extended to the study of NC-FETs. This work would support the use of the TCAD modeling approach as a predictive tool to optimize the design and the operation of the new generation NC-FET devices for the future High Energy Physics experiments in the HL-LHC scenario. The NC working principle will be employed for particle detection applications in order to exceed the limits imposed by current CMOS technology in terms of power consumption, signal detectability and switching speed.


Author(s):  
Preeti Kumari ◽  
◽  
Kavita Lalwani ◽  
Ranjit Dalal ◽  
Ashutosh Bhardwaj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document