Time-resolved spectrometry for the characterization of a reference field for pulsed radiation

2012 ◽  
Vol 7 (10) ◽  
pp. T10002-T10002
Author(s):  
P Sievers ◽  
J Klammer ◽  
O Hupe ◽  
T Michel ◽  
G Anton
2017 ◽  
Vol 112 (3) ◽  
pp. 346a
Author(s):  
Hannah Leopold ◽  
Megan Currie ◽  
Jacob Schwarz ◽  
Arnold J. Boersma ◽  
Erin D. Sheets ◽  
...  

Author(s):  
Diana Spiegelberg ◽  
Jonas Stenberg ◽  
Pascale Richalet ◽  
Marc Vanhove

AbstractDesign of next-generation therapeutics comes with new challenges and emulates technology and methods to meet them. Characterizing the binding of either natural ligands or therapeutic proteins to cell-surface receptors, for which relevant recombinant versions may not exist, represents one of these challenges. Here we report the characterization of the interaction of five different antibody therapeutics (Trastuzumab, Rituximab, Panitumumab, Pertuzumab, and Cetuximab) with their cognate target receptors using LigandTracer. The method offers the advantage of being performed on live cells, alleviating the need for a recombinant source of the receptor. Furthermore, time-resolved measurements, in addition to allowing the determination of the affinity of the studied drug to its target, give access to the binding kinetics thereby providing a full characterization of the system. In this study, we also compared time-resolved LigandTracer data with end-point KD determination from flow cytometry experiments and hypothesize that discrepancies between these two approaches, when they exist, generally come from flow cytometry titration curves being acquired prior to full equilibration of the system. Our data, however, show that knowledge of the kinetics of the interaction allows to reconcile the data obtained by flow cytometry and LigandTracer and demonstrate the complementarity of these two methods.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3182 ◽  
Author(s):  
Lili Du ◽  
Xin Lan ◽  
Zhiping Yan ◽  
Ruixue Zhu ◽  
David Phillips

Nitrenium ions are important reactive intermediates in chemistry and biology. In this work, femtosecond and nanosecond transient absorption (fs-TA and ns-TA) along with nanosecond time-resolved resonance Raman (ns-TR3) experiments were employed to examine the photochemical pathways of N-(4,4′-dibromodiphenylamino)-2,4,6-trimethylpyridinium BF4− (salt (DN) from just absorption of a photon of light to the production of the important N,N-di(4-bromophenyl)nitrenium ion 2. In acetonitrile (MeCN), the formation of halogenated diarylnitrenium ion 2 was observed within 4 ps, showing the vibrational spectra with strong intensity. The nucleophilic adduct reaction of ion 2 with H2O was also examined in aqueous solutions. The direct detection of the unique ortho adduct intermediate 3 shows that there is an efficient and exclusive reaction pathway for 2 with H2O. The results shown in this paper give new characterization of 2, which can be used to design time-resolved spectroscopy investigations of covalent addition reactions of nitrenium ions with other molecules in future studies.


2010 ◽  
Author(s):  
Jean-Pierre Bouchard ◽  
Israël Veilleux ◽  
Isabelle Noiseux ◽  
Sébastien Leclair ◽  
Rym Jedidi ◽  
...  

2013 ◽  
Author(s):  
Arantza Eiguren-Fernandez ◽  
Gregory Lewis ◽  
Steven Spielman ◽  
Susanne Hering

2008 ◽  
Vol 63 (8) ◽  
pp. 913-917 ◽  
Author(s):  
D.J. Tuite ◽  
C. Francois ◽  
K. Dill ◽  
T.J. Carroll ◽  
T. Grant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document