scholarly journals Underlying drivers of decade-long fluctuation in the global mean sea-level rise

Author(s):  
Hyeonsoo Cha ◽  
Jae-Hong Moon ◽  
Taekyun Kim ◽  
Y. Tony Song

Abstract Natural climate variability can mask the background trend of global mean sea-level (GMSL) caused by global warming. Recent advances in satellite measurements and ocean heat-content estimates have enabled the monitoring of GMSL budget components and provide insights into ocean effects on the Earth’s energy imbalance and hydrology. We observed a decadal fluctuation in GMSL rise, which coincides with an increasing trend in the 2010s after the warming “hiatus” during the 2000s, and demonstrated that the rate of sea-level rise can be attributed to climate-related decadal fluctuations in ocean heat storage and hydrology. Since ~2011, the decadal climate variability has resulted in additional ocean mass gain (271±89 Gt yr-1) from glacier-free land water storage and increased ocean heat uptake (0.28±0.17 W m-2), increasing the GMSL rise rate by 1.4±0.4 mm yr-1. The suggested estimates of sea-level and Earth’s energy budgets highlight the importance of natural variability in understanding the impacts of the ongoing sea-level rise.

2021 ◽  
Author(s):  
Hyeonsoo Cha ◽  
Jae-Hong Moon ◽  
Taekyun Kim ◽  
Yuhe Tony Song

Abstract Recent advances in satellite measurements and ocean heat-content estimates have enabled the monitoring of global mean sea level (GMSL) budget components and understanding of ocean effects on the Earth’s energy imbalance and hydrology. We observed a notable accelerating GMSL rise rate in the recent decade after the warming “hiatus” during the 2000s, and demonstrated that this was attributed to decade-long shifts in ocean heat storage and hydrology. Since ~2011, climate-driven changes have resulted in additional ocean mass gain (271±89 Gt yr-1) from glacier-free land water storage and increased ocean heat uptake (0.28±0.17 W m-2), accelerating the GMSL rise rate by 1.4±0.4 mm yr-1. The suggested estimates of sea-level and Earth’s energy budgets highlight the importance of natural variability in understanding the impacts of the ongoing sea-level rise.


2013 ◽  
Vol 88 (4) ◽  
pp. 351-361 ◽  
Author(s):  
Olivier Henry ◽  
Michael Ablain ◽  
Benoit Meyssignac ◽  
Anny Cazenave ◽  
Dallas Masters ◽  
...  

2020 ◽  
Author(s):  
Jim Jordan ◽  
Hilmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris Stokes ◽  
Stewart Jamieson ◽  
...  

<p>The East Antarctic Ice Sheet (EAIS) is the single largest potential contributor to future global mean sea level rise, containing a water mass equivalent of 53 m. Recent work has found the overall mass balance of the EAIS to be approximately in equilibrium, albeit with large uncertainties. However, changes in oceanic conditions have the potential to upset this balance. This could happen by both a general warming of the ocean and also by shifts in oceanic conditions allowing warmer water masses to intrude into ice shelf cavities.</p><p>We use the Úa numerical ice-flow model, combined with ocean-melt rates parameterized by the PICO box mode, to predict the future contribution to global-mean sea level of the EAIS. Results are shown for the next 100 years under a range of emission scenarios and oceanic conditions on a region by region basis, as well as for the whole of the EAIS. </p>


2020 ◽  
Author(s):  
Benjamin Horton ◽  
Nicole Khan ◽  
Niamh Cahill ◽  
Janice Lee ◽  
Tim Shaw ◽  
...  

<p>Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit expert judgments from members of the scientific community regarding future global mean sea-level (GMSL) rise and its uncertainties, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (at least 66% probability) GMSL rise of 0.30–0.65 m by 2100, and 0.54–2.15 m by 2300, relative to 1986–2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63–1.32 m by 2100, and 1.67–5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42% (original survey) and 45% (current survey) that under the high emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely (i.e. an exceedance probability of 17%) range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet.</p>


2015 ◽  
Vol 1 (8) ◽  
pp. e1500560 ◽  
Author(s):  
Matthew J. Widlansky ◽  
Axel Timmermann ◽  
Wenju Cai

Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño–Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño–related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise.


2015 ◽  
Vol 42 (10) ◽  
pp. 3998-4006 ◽  
Author(s):  
Shuang Yi ◽  
Wenke Sun ◽  
Kosuke Heki ◽  
An Qian

2020 ◽  
Author(s):  
Lorena Moreira ◽  
Anny Cazenave ◽  
Denise Cáceres ◽  
Hindumathi Palanisamy ◽  
Habib Dieng

<p>Since nearly 3 decades, high-precision satellite altimetry allows us to precisely measure the mean sea level evolution at global and regional scales. In terms of global mean, sea level is rising at a mean rate of 3.2 mm/yr. The altimetry record is also suggesting that the global mean sea level rise is accelerating. However, the exact value of the acceleration and even its mere existence are still debated. Determination of the global warming-related sea level rate and acceleration are somewhat hindered by the interannual signal caused by natural climate variability. During the recent years, several studies have shown that at interannual time scale, the global mean sea level is mostly due to ENSO-driven land water storage variations. But thermal expansion fluctuations may also contribute. Thus, to isolate the global warming signal in the global mean sea level, we need to remove the ENSO-related interannual variability. For that purpose we use the Water Gap Global Hydrological model developed by the University of Frankfurt for land water storage as well as GRACE space gravimetry data on land and empirical models based on ENSO indices. We also extract the ENSO-related signal in thermal expansion. After removing the total interannual variability signal due to both mass and steric components, we compute the evolution with time of the ‘residual’ rate of sea level rise over successive 5-year moving windows, as well as the associated acceleration. Using time series of thermal expansion and ice sheet mass balances, we also estimate the respective contributions of each component to the global mean sea level acceleration.</p>


2017 ◽  
Vol 12 (12) ◽  
pp. 124010 ◽  
Author(s):  
Klaus Bittermann ◽  
Stefan Rahmstorf ◽  
Robert E Kopp ◽  
Andrew C Kemp

Sign in / Sign up

Export Citation Format

Share Document