scholarly journals Statistics of anomalously localized states at the center of bandE= 0 in the one-dimensional Anderson localization model

2012 ◽  
Vol 46 (2) ◽  
pp. 025001 ◽  
Author(s):  
V E Kravtsov ◽  
V I Yudson
1997 ◽  
Vol 11 (18) ◽  
pp. 2157-2182 ◽  
Author(s):  
Kazumoto Iguchi

In this paper we discuss the application of the Saxon–Hutner theorem and its converse theorem in one-dimensional binary disordered lattices to the one-dimensional binary quasiperiodic lattices. We first summarize some basic theorems in one-dimensional periodic lattices. We discuss how the bulk and edge states are treated in the transfer matrix method. Second, we review the Saxon–Hutner theorem and prove the converse theorem, using the so-called Fricke identities. Third, we present an alternative approach for a rigorous proof of the existence of a Cantor-set spectrum in the Fibonacci lattice and in the related binary quasiperiodic lattices by means of the theorems together with their trace map with the invariant I. We obtain that if I > 0, then the spectrum is always a Cantor set, which was first proved for the Fibonacci lattice by Sütö and generalized for other quasiperiodic lattices by Bellissard, Iochum, Scopolla, and Testard. Fourth, we rigorously prove the existence of extended states in the spectrum of a class of binary quasiperiodic lattices first studied by Kolář and Ali. Fifth, we discuss the so-called gap labeling theorem emphasized by Bellissard and the classic argument of Kohn and Thouless for localized states in a one-dimensional disordered lattice in terms of the language of the transfer matrix method.


1996 ◽  
Vol 10 (26) ◽  
pp. 3569-3581 ◽  
Author(s):  
SAM YOUNG CHO ◽  
TAESEUNG CHOI ◽  
CHANG-MO RYU

Quantum transport in the open-system mesoscopic rings with stubs in the absence of magnetic field is investigated by using the one-dimensional quantum waveguide theory. It is shown that discretely localized states due to the presence of stubs play an important role in the electron transport. The behavior of transmission probability shows the asymmetric Fano resonance, which arises from the interaction between the continuum states and the discrete states. Amplification of the persistent currents by the localized states due to the stub is clearly shown. Negative currents are also noticed.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


2011 ◽  
Vol 35 (1) ◽  
pp. 15-27
Author(s):  
Zoran Ivić ◽  
Željko Pržulj

Adiabatic large polarons in anisotropic molecular crystals We study the large polaron whose motion is confined to a single chain in a system composed of the collection of parallel molecular chains embedded in threedimensional lattice. It is found that the interchain coupling has a significant impact on the large polaron characteristics. In particular, its radius is quite larger while its effective mass is considerably lighter than that estimated within the one-dimensional models. We believe that our findings should be taken into account for the proper understanding of the possible role of large polarons in the charge and energy transfer in quasi-one-dimensional substances.


1983 ◽  
Vol 4 ◽  
pp. 297-297
Author(s):  
G. Brugnot

We consider the paper by Brugnot and Pochat (1981), which describes a one-dimensional model applied to a snow avalanche. The main advance made here is the introduction of the second dimension in the runout zone. Indeed, in the channelled course, we still use the one-dimensional model, but, when the avalanche spreads before stopping, we apply a (x, y) grid on the ground and six equations have to be solved: (1) for the avalanche body, one equation for continuity and two equations for momentum conservation, and (2) at the front, one equation for continuity and two equations for momentum conservation. We suppose the front to be a mobile jump, with longitudinal velocity varying more rapidly than transverse velocity.We solve these equations by a finite difference method. This involves many topological problems, due to the actual position of the front, which is defined by its intersection with the reference grid (SI, YJ). In the near future our two directions of research will be testing the code on actual avalanches and improving it by trying to make it cheaper without impairing its accuracy.


Sign in / Sign up

Export Citation Format

Share Document