QUANTUM TRANSPORT IN MESOSCOPIC RINGS WITH STUBS

1996 ◽  
Vol 10 (26) ◽  
pp. 3569-3581 ◽  
Author(s):  
SAM YOUNG CHO ◽  
TAESEUNG CHOI ◽  
CHANG-MO RYU

Quantum transport in the open-system mesoscopic rings with stubs in the absence of magnetic field is investigated by using the one-dimensional quantum waveguide theory. It is shown that discretely localized states due to the presence of stubs play an important role in the electron transport. The behavior of transmission probability shows the asymmetric Fano resonance, which arises from the interaction between the continuum states and the discrete states. Amplification of the persistent currents by the localized states due to the stub is clearly shown. Negative currents are also noticed.

2011 ◽  
Vol 25 (16) ◽  
pp. 1349-1358 ◽  
Author(s):  
GUILLERMO CORDOURIER-MARURI ◽  
ROMEO DE COSS ◽  
VIRENDRA GUPTA

The problem of one-dimensional quantum wire along which a moving particle interacts with a linear array of N delta-function potentials is studied. Using a quantum waveguide approach, the transfer matrix is calculated to obtain the transmission probability of the particle. Results for arbitrary N and for specific regular arrays are presented. Some particular symmetries and invariances of the delta-function potential array for the N = 2 case are analyzed in detail. It is shown that perfect transmission can take place in a variety of situations.


1988 ◽  
Vol 108 ◽  
pp. 133-140
Author(s):  
W. Schmutz

Advances in theoretical modeling of rapidly expanding atmospheres in the past few years made it possible to determine the stellar parameters of the Wolf-Rayet stars. This progress is mainly due to the improvement of the models with respect to their spatial extension: The new generation of models treat spherically-symmetric expanding atmospheres, i.e. the models are one-dimensional. Older models describe the wind by only one representative point. The older models are in fact ‘core-halo’ approximations. They have been introduced by Castor and van Blerkom (1970), and were extensively employed in the past (cf. e.g. Willis and Wilson, 1978; Smith and Willis, 1982). First results from new one-dimensional model calculations are published by Hillier (1984), Schmutz (1984), Hamann (1985), Hillier (1986), and Schmutz et al. (1987a); more detailed results are presented by Schmutz and Hamann (1986), Hamann and Schmutz (1987), Hillier (1987a,b), Wessolowski et al. (1987), Hillier (1987c) and Hamann et al. (1987). These results demonstrate that the step from zero- to one-dimensional calculations is essential. The important point is that the complicated interrelation between NLTE-level populations and radiation field is treated adequately (Schmutz and Hamann, 1986; Hillier, 1987). For this interrelation it is crucial to model consistently not only the line-formation region, but also the layers where the continuum is emitted. In fact, it is the core-halo approximation that causes the one-point models to fail in certain aspects.


1995 ◽  
Vol 48 (11S) ◽  
pp. S25-S29 ◽  
Author(s):  
Miguel Luiz Bucalem ◽  
Klaus-Ju¨rgen Bathe

We present a study of the membrane and shear locking behavior in an isoparametric curved beam element. The objective is to gain insight into the locking phenomenon, specially membrane locking, of continuum based degenerated shell elements. This is possible since the isobeam element is the one-dimensional analogue of the continuum based shell element. In this context, reduced integration and mixed interpolation schemes are briefly examined. Such a study can be a valuable aid when developing new shell elements.


1997 ◽  
Vol 11 (18) ◽  
pp. 2157-2182 ◽  
Author(s):  
Kazumoto Iguchi

In this paper we discuss the application of the Saxon–Hutner theorem and its converse theorem in one-dimensional binary disordered lattices to the one-dimensional binary quasiperiodic lattices. We first summarize some basic theorems in one-dimensional periodic lattices. We discuss how the bulk and edge states are treated in the transfer matrix method. Second, we review the Saxon–Hutner theorem and prove the converse theorem, using the so-called Fricke identities. Third, we present an alternative approach for a rigorous proof of the existence of a Cantor-set spectrum in the Fibonacci lattice and in the related binary quasiperiodic lattices by means of the theorems together with their trace map with the invariant I. We obtain that if I > 0, then the spectrum is always a Cantor set, which was first proved for the Fibonacci lattice by Sütö and generalized for other quasiperiodic lattices by Bellissard, Iochum, Scopolla, and Testard. Fourth, we rigorously prove the existence of extended states in the spectrum of a class of binary quasiperiodic lattices first studied by Kolář and Ali. Fifth, we discuss the so-called gap labeling theorem emphasized by Bellissard and the classic argument of Kohn and Thouless for localized states in a one-dimensional disordered lattice in terms of the language of the transfer matrix method.


1996 ◽  
Vol 10 (06) ◽  
pp. 701-712 ◽  
Author(s):  
CHANG-MO RYU ◽  
SAM YOUNG CHO ◽  
MINCHEOL SHIN ◽  
KYOUNG WAN PARK ◽  
SEONGJAE LEE ◽  
...  

Quantum interference effects for a mesoscopic loop with three leads are investigated by using a one-dimensional quantum waveguide theory. The transmission and reflection probabilities are analytically obtained in terms of the magnetic flux, arm length, and wave vector. Oscillation of the magnetoconductance is explicitly demonstrated. Magnetoconductance is found to be sharply peaked for certain localized values of flux and kl. In addition, it is noticed that the periodicity of the transmission probability with respect to kl depends more sensitively on the lead position, compared to the case of the two-lead loop.


2008 ◽  
Vol 20 (39) ◽  
pp. 395209 ◽  
Author(s):  
Bo-Bo Wei ◽  
Shi-Jian Gu ◽  
Hai-Qing Lin

Author(s):  
O. A. Tkachenko ◽  
D. G. Baksheev ◽  
V. A. Tkachenko

Magnetotransport in submicron devices formed on the basis of GaAs/AlGaAs structures is simulated by the method of nonequilibrium Green functions. In the one-particle approximation, the influence of a perpendicular magnetic field on electron transmission through a quasi-one-dimensional quantum dot and the Aharonov—Bohm interferometer is considered. Two-terminal conductance and magnetic moment of the devices are calculated. Two-dimensional patterns of equilibrium (persistent) currents are obtained. The correlations between energy dependences of magnetic moment and conductance are considered. For the quasi-one-dimensional quantum dot, regular conductance oscillations similar to the ABOs were found at low magnetic fields (0.05—0.4 T). In the case of a ring interferometer, the contribution to the total equilibrium current and magnetic moment at a given energy can change sharply both in magnitude and in sign when the magnetic field changes within the same Aharonov—Bohm oscillation. The conductance through the interferometer is determined not by the number of propagating modes, but rather by the influence of triangular quantum dots at the entrances to the ring, causing back scattering. Period of calculated ABOs corresponds to that measured for these devices.


Sign in / Sign up

Export Citation Format

Share Document