Mean exit time in irregularly-shaped annular and composite disc domains

Author(s):  
Elliot J Carr ◽  
Daniel J VandenHeuvel ◽  
Joshua M Wilson ◽  
Matthew J Simpson

Abstract Calculating the mean exit time (MET) for models of diffusion is a classical problem in statistical physics, with various applications in biophysics, economics and heat and mass transfer. While many exact results for MET are known for diffusion in simple geometries involving homogeneous materials, calculating MET for diffusion in realistic geometries involving heterogeneous materials is typically limited to repeated stochastic simulations or numerical solutions of the associated boundary value problem (BVP). In this work we derive exact solutions for the MET in irregular annular domains, including some applications where diffusion occurs in heterogenous media. These solutions are obtained by taking the exact results for MET in an annulus, and then constructing various perturbation solutions to account for the irregular geometries involved. These solutions, with a range of boundary conditions, are implemented symbolically and compare very well with averaged data from repeated stochastic simulations and with numerical solutions of the associated BVP. Software to implement the exact solutions is available on \href{https://github.com/ProfMJSimpson/Exit_time}{GitHub}.

2012 ◽  
Vol 52 (supplement) ◽  
pp. S84
Author(s):  
Eiji Yamamoto ◽  
Takuma Akimoto ◽  
Yoshinori Hirano ◽  
Masato Yasui ◽  
Kenji Yasuoka

Author(s):  
Jairo Rodríguez-Padilla ◽  
Daniel Olmos-Liceaga

The implementation of numerical methods to solve and study equations for cardiac wave propagation in realistic geometries is very costly, in terms of computational resources. The aim of this work is to show the improvement that can be obtained with Chebyshev polynomials-based methods over the classical finite difference schemes to obtain numerical solutions of cardiac models. To this end, we present a Chebyshev multidomain (CMD) Pseudospectral method to solve a simple two variable cardiac models on three-dimensional anisotropic media and we show the usefulness of the method over the traditional finite differences scheme widely used in the literature.


The homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations.


2000 ◽  
Author(s):  
Lalit Vedula ◽  
N. Sri Namachchivaya

Abstract The dynamics of a shallow arch subjected to small random external and parametric excitation is invegistated in this work. We develop rigorous methods to replace, in some limiting regime, the original higher dimensional system of equations by a simpler, constructive and rational approximation – a low-dimensional model of the dynamical system. To this end, we study the equations as a random perturbation of a two-dimensional Hamiltonian system. We achieve the model-reduction through stochastic averaging and the reduced Markov process takes its values on a graph with certain glueing conditions at the vertex of the graph. Examination of the reduced Markov process on the graph yields many important results such as mean exit time, stationary probability density function.


2020 ◽  
Vol 98 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Nauman Raza ◽  
Muhammad Asad Ullah

A comparative analysis is carried out to study the unsteady flow of a Maxwell fluid in the presence of Newtonian heating near a vertical flat plate. The fractional derivatives presented by Caputo and Caputo–Fabrizio are applied to make a physical model for a Maxwell fluid. Exact solutions of the non-dimensional temperature and velocity fields for Caputo and Caputo–Fabrizio time-fractional derivatives are determined via the Laplace transform technique. Numerical solutions of partial differential equations are obtained by employing Tzou’s and Stehfest’s algorithms to compare the results of both models. Exact solutions with integer-order derivative (fractional parameter α = 1) are also obtained for both temperature and velocity distributions as a special case. A graphical illustration is made to discuss the effect of Prandtl number Pr and time t on the temperature field. Similarly, the effects of Maxwell fluid parameter λ and other flow parameters on the velocity field are presented graphically, as well as in tabular form.


2012 ◽  
Vol 86 (4) ◽  
Author(s):  
J.-F. Rupprecht ◽  
O. Bénichou ◽  
D. S. Grebenkov ◽  
R. Voituriez
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document