scholarly journals Copper-containing wastewater treatment and copper recovery by using a continuous flow microbial fuel cell

Author(s):  
W P Liu ◽  
M Z Zhao ◽  
X F Yin
2013 ◽  
Vol 777 ◽  
pp. 92-95
Author(s):  
Wei Ping Liu ◽  
Xia Fei Yin

A continuous flow double chamber microbial fuel cell (MFC) for wastewater treatment was constructed. Anaerobic activated sludge was used as bacterial source and simulated organic wastewater was used as substrate. Effluent of anode chamber was used directly as influent of the cathode chamber. The aerobic microorganisms could degrade organic matters further. The electricity production and organic wastewater treatment of the MFC were studied. The results show that the wastewater chemical oxygen demand (COD) of the total removal rate was 74.1%~77.45%, the anode chamber in which the removal rate of COD is 32.2%~35.3%, and COD removal efficiency of aerobic biological treatment in the cathode chamber was 60.2%~66.7%. The continuous flow system could improve the removal rate further. The maximum current density of MFC was 1.56 mAm-2, the maximum output power was 24.336 mWm-2.


2018 ◽  
Vol 214 ◽  
pp. 232-241 ◽  
Author(s):  
Edson Baltazar Estrada-Arriaga ◽  
Jesús Hernández-Romano ◽  
Liliana García-Sánchez ◽  
Rosa Angélica Guillén Garcés ◽  
Erick Obed Bahena-Bahena ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Md. Abdul Halim ◽  
Md. Owaleur Rahman ◽  
Mohammad Ibrahim ◽  
Rituparna Kundu ◽  
Biplob Kumar Biswas

Finding sustainable alternative energy resources and treating wastewater are the two most important issues that need to be solved. Microbial fuel cell (MFC) technology has demonstrated a tremendous potential in bioelectricity generation with wastewater treatment. Since wastewater can be used as a source of electrolyte for the MFC, the salient point of this study was to investigate the effect of pH on bioelectricity production using various biomass feed (wastewater and river water) as the anolyte in a dual-chambered MFC. Maximum extents of power density (1459.02 mW·m−2), current density (1288.9 mA·m−2), and voltage (1132 mV) were obtained at pH 8 by using Bhairab river water as a feedstock in the MFC. A substantial extent of chemical oxygen demand (COD) removal (94%) as well as coulombic efficiency (41.7%) was also achieved in the same chamber at pH 8. The overall performance of the MFC, in terms of bioelectricity generation, COD removal, and coulombic efficiency, indicates a plausible utilization of the MFC for wastewater treatment as well as bioelectricity production.


Sign in / Sign up

Export Citation Format

Share Document