oily wastewater treatment
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 95)

H-INDEX

30
(FIVE YEARS 10)

2022 ◽  
Vol 29 (2) ◽  
Author(s):  
Ahmed M.A. El Naggar ◽  
Ahmed G. Soliman ◽  
Mahmoud R. Noor El-Din ◽  
Ahmed M. Ramadan ◽  
Mohamed A. Youssef

Author(s):  
Jingfang Zhu ◽  
Longyang Li ◽  
Zhixiang Zeng ◽  
Meng Dong ◽  
Haizhou Huang ◽  
...  

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Nur Fatihah Zulkefli ◽  
Nur Hashimah Alias ◽  
Nur Shafiqah Jamaluddin ◽  
Norfadhilatuladha Abdullah ◽  
Shareena Fairuz Abdul Manaf ◽  
...  

The discharge of massive amounts of oily wastewater has become one of the major concerns among the scientific community. Membrane filtration has been one of the most used methods of treating oily wastewater due to its stability, convenience handling, and durability. However, the continuous occurrence of membrane fouling aggravates the membrane’s performance efficiency. Membrane fouling can be defined as the accumulation of various materials in the pores or surface of the membrane that affect the permeate’s quantity and quality. Many aspects of fouling have been reviewed, but recent methods for fouling reduction in oily wastewater have not been explored and discussed sufficiently. This review highlights the mitigation strategies to reduce membrane fouling from oily wastewater. We first review the membrane technology principle for oily wastewater treatment, followed by a discussion on different fouling mechanisms of inorganic fouling, organic fouling, biological fouling, and colloidal fouling for better understanding and prevention of membrane fouling. Recent mitigation strategies to reduce fouling caused by oily wastewater treatment are also discussed.


Author(s):  
Abdul Halim ◽  
Lusi Ernawati ◽  
Maya Ismayati ◽  
Fahimah Martak ◽  
Toshiharu Enomae

AbstractIt is challenging to purify oily wastewater, which affects water-energy-food production. One promising method is membrane-based separation. This paper reviews the current research trend of applying cellulose as a membrane material that mimics one of three typical biostructures: superhydrophobic, underwater superoleophobic, and Janus surfaces. Nature has provided efficient and effective structures through the evolutionary process. This has inspired many researchers to create technologies that mimic nature’s structures or the fabrication process. Lotus leaves, fish scales, and Namib beetles are three representative structures with distinct functional and surface properties: superhydrophobic, underwater superoleophobic, and Janus surfaces. The characteristics of these structures have been widely studied and applied to membrane materials to improve their performance. One attractive membrane material is cellulose, whichhas been studied from the perspective of its biodegradability and sustainability. In this review, the principles, mechanisms, fabrication processes, and membrane performances are summarized and compared. The theory of wettability is also described to build a comprehensive understanding of the concept. Finally, future outlook is discussed to challenge the gap between laboratory and industrial applications.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 888
Author(s):  
Mingliang Chen ◽  
Sebastiaan G. J. Heijman ◽  
Luuk C. Rietveld

Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.


Sign in / Sign up

Export Citation Format

Share Document