scholarly journals Adsorption properties of activated carbon fiber for highly effective removal of methyl orange dye

Author(s):  
Yue Yang ◽  
Chengli Guan
2019 ◽  
Vol 80 ◽  
pp. 98-105 ◽  
Author(s):  
Dong-Yeon Ryu ◽  
Takaaki Shimohara ◽  
Koji Nakabayashi ◽  
Jin Miyawaki ◽  
Joo-Il Park ◽  
...  

2020 ◽  
Vol 82 (4) ◽  
pp. 732-746
Author(s):  
Jian Liu ◽  
Zhengji Yi ◽  
Ziling Ou ◽  
Tianhui Yang

Abstract The application of activated carbon fiber supported nanoscale zero-valent iron (ACF-nZVI) in the continuous removal of Cr(VI) and methyl orange (MO) from aqueous solution was studied in depth. The breakthrough curves of Cr(VI) in a fixed bed with ACF-nZVI were measured, and compared with those in the fixed bed with ACF. The catalytic wet peroxide oxidation (CWPO) process for MO was also carried out using ACF-nZVI after reacting with Cr(VI) in the same fixed bed. The results showed that the breakthrough time of ACF-nZVI was significantly longer than that of ACF. Higher pH values were unfavorable for the Cr(VI) removal. The breakthrough time increased with decreasing inlet Cr(VI) concentration or increasing bed height. The Yoon–Nelson and bed depth service time (BDST) models were found to show good agreement with the experimental data. The Cr(VI) removal capacity when using ACF-nZVI was two times higher than that when using ACF. Under the optimal empty bed contact time of 1.256 min, the fixed bed displayed high MO conversion (99.2%) and chemical oxygen demand removal ratio (55.7%) with low Fe leaching concentration (<5 mg/L) after continuous running for 240 min. After three cycles, the conversion of MO remained largely unchanged.


2011 ◽  
Vol 356-360 ◽  
pp. 547-553
Author(s):  
Yong Fa Diao ◽  
Jian Dong Ding ◽  
Wan Xuan Yu ◽  
Yue Zou ◽  
Wei Hui Hao

In this paper, cobalt oxide was deposited on the surface of Activated Carbon Fiber (ACF) by adsorption and was then sintered. The effects of cobalt oxide on the properties of ACF were studied by XPS, FTIR, and XRD methods. Mercury removal performance was also investigated. 5% cobalt was well dispersed on the surface of ACF, and a variety of oxygen-containing groups had been enhanced. The chemical functional groups on the surface of ACF were changed to strengthen the adsorption and catalytic oxidation of ACF to the element mercury (Hg0). The measurement results showed that ACF coated with cobalt oxide had higher adsorption properties.


Carbon ◽  
2001 ◽  
Vol 39 (7) ◽  
pp. 1075-1082 ◽  
Author(s):  
Cheol-Min Yang ◽  
Katsumi Kaneko

Sign in / Sign up

Export Citation Format

Share Document