scholarly journals A study on the method of stability calculation of soil nailing expansive soil slope

Author(s):  
Wu Kun-ming ◽  
Fang Jin-miao
2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Chao Liang ◽  
Zhijian Wu ◽  
Xinfu Liu ◽  
Zhaomei Xiong ◽  
Tao Li

2011 ◽  
Vol 261-263 ◽  
pp. 1709-1713
Author(s):  
Meng Yang ◽  
Xiao Min Liu

This paper introduces a new failure mode pattern of soil slope – the logarithmic spiral slippery fracture. A mathematical model for the logarithmic spiral slippery fracture is established, taking the anti-shear function of the soil-nailing into consideration. The shear of soil-nailing, axial force, and the safety coefficients based on the limiting equilibrium method are derived, leading to an accurate stability analysis of the strengthening of soil slope. A case study shows that the anti-shear function of the soil-nailing can be significant and should not be ignored in engineering design.


2014 ◽  
Vol 501-504 ◽  
pp. 359-367
Author(s):  
Feng Zhou ◽  
Kai Zhang ◽  
Ying Chun Tang

This paper summarizes and analyzes the basic concepts and ecological protection mechanism for expansion geotechnical slope failure mechanism and the resulting impact on the shallow, traction engineering properties such as analysis, proposed ecological slope of expansive soil slope mechanism of action: vegetation system by improving internal slope soil moisture and temperature changes affect the atmosphere and thus effectively reduce the depth. Vegetation root through reinforced anchoring, delay time and improving soil hydration ductility such as the role played good strength enhancement. Vegetation formation can effectively improve the damaged outer slope interface morphology, to restore the ecological environment and landscape effect. Integrating the past experience on expansive soil slope treatment, this paper provide a slope treatment method used in Nanning metro Tunli section, these will provide reference for the expansive soil slope ecological management.


2019 ◽  
Vol 9 (4) ◽  
pp. 4469-4473
Author(s):  
D. A. Mangnejo ◽  
S. J. Oad ◽  
S. A. Kalhoro ◽  
S. Ahmed ◽  
F. H. Laghari ◽  
...  

Slope instability may be a result of change in stress conditions, rise in groundwater table and rainfall. Similarly, many slopes that have been stable for several years can abruptly fail due to changes in geometry, weak soil shear strength or as the effect of an external force. Debris flows (i.e. slope failures) take place without any warning and can have devastating results. So, it is vital to understand the slope failure mechanism and adopt safety prevention measures. Soil nailing is one of the widely used stabilization techniques for soil slopes. In this study, soil nail technique is proposed to upgrade the existing slope in clay. A parametric study was conducted to understand the effects of different nail diameter (i.e. 25mm and 40mm) and nail inclination (i.e. 200, 250, 300, 350 and 400) on slope stability. Morgenstern-Price (i.e. limit equilibrium) method was used to determine the factor of safety of the slope. It was found that the factor of safety of the existing slope improved significantly with three rows of 40mm diameter nail at an inclination of 400.


Sign in / Sign up

Export Citation Format

Share Document