scholarly journals Addressing Climate change in the water sector: The study of Run-of-river Hydropower potential in Vu Gia - Thu Bon river basin of Vietnam

Author(s):  
L H Nguyen ◽  
K Fukushi
2013 ◽  
Vol 17 (19) ◽  
pp. 1-22 ◽  
Author(s):  
G. T. Aronica ◽  
B. Bonaccorso

Abstract In recent years, increasing attention has been paid to hydropower generation, since it is a renewable, efficient, and reliable source of energy, as well as an effective tool to reduce the atmospheric concentrations of greenhouse gases resulting from human activities. At the same time, however, hydropower is among the most vulnerable industries to global warming, because water resources are closely linked to climate changes. Indeed, the effects of climate change on water availability are expected to affect hydropower generation with special reference to southern countries, which are supposed to face dryer conditions in the next decades. The aim of this paper is to qualitatively assess the impact of future climate change on the hydrological regime of the Alcantara River basin, eastern Sicily (Italy), based on Monte Carlo simulations. Synthetic series of daily rainfall and temperature are generated, based on observed data, through a first-order Markov chain and an autoregressive moving average (ARMA) model, respectively, for the current scenario and two future scenarios at 2025. In particular, relative changes in the monthly mean and standard deviation values of daily rainfall and temperature at 2025, predicted by the Hadley Centre Coupled Model, version 3 (HadCM3) for A2 and B2 greenhouse gas emissions scenarios, are adopted to generate future values of precipitation and temperature. Synthetic series for the two climatic scenarios are then introduced as input into the Identification of Unit Hydrographs and Component Flows from Rainfall, Evapotranspiration and Streamflow Data (IHACRES) model to simulate the hydrological response of the basin. The effects of climate change are investigated by analyzing potential modification of the resulting flow duration curves and utilization curves, which allow a site's energy potential for the design of run-of-river hydropower plants to be estimated.


Author(s):  
Rodric M. Nonki ◽  
André Lenouo ◽  
Clément Tchawoua ◽  
Christopher J. Lennard ◽  
Ernest Amoussou

Abstract. Nowadays, special attention is paid to hydroelectric production because it is an efficient, reliable, and renewable source of energy, especially in developing countries like Cameroon, where hydropower potential is the main source of electricity production. It also represents a useful tool to reduce the atmospheric greenhouse gas concentrations caused by human activities. However, it is the most sensitive industry to global warming, mainly because climate change will directly affect the quality, quantity of water resources (streamflow and runoff), which are the important drivers of hydropower potential. This study examined the response of hydropower potential to climate change on the Lagdo dam located in the Benue River Basin, Northern Cameroon. Hydropower potential was computed based on streamflow simulated using HBV-Light hydrological model with dynamically downscaled temperature and precipitation from the regional climate model REMO. These data were obtained using the boundary conditions of two general circulation models (GCMs): the Europe-wide Consortium Earth System Model (EC-Earth) and the Max Planck Institute-Earth System Model (MPI-ESM) under three Representative Concentrations Pathways (RCP2.6, RCP4.5 and RCP8.5). The results suggest that, the combination of decreased precipitation and streamflow, increased PET will negatively impact the hydropower potential in the Lagdo dam under climate change scenarios, models and future periods.


Energy ◽  
2019 ◽  
Vol 167 ◽  
pp. 950-959 ◽  
Author(s):  
Hejia Wang ◽  
Weihua Xiao ◽  
Yicheng Wang ◽  
Yong Zhao ◽  
Fan Lu ◽  
...  

2015 ◽  
Vol 17 (2) ◽  
pp. 323-333 ◽  

<div> <p>The present study has been carried out for the trans-boundary Subansiri sub-basin of Brahmaputra river basin. Subansiri is the largest tributary of Brahmaputra within India and the river system has its practical importance as it holds a high water resources as well as hydropower potential for the country, which still remains highly under-developed. The probable impact of climate change has been analyzed using hypothetical climate scenarios to understand the behavior of total streamflow as well as snowmelt runoff under the changing conditions. Based on the simulations of a daily snowmelt runoff model (SNOWMOD) using six years of data, it has been observed that the total stream flow as well as the snowmelt runoff increase with temperature. Snowmelt runoff was found to increase by about 5% and 12% for the increase of 1&deg;C and 2&deg;C in temperature respectively.&nbsp; However, not much change in snowmelt runoff was observed with changed precipitation scenarios. It has been found from this study that total stream flow changes in all scenarios of temperature (T) and precipitation (P). The observed maximum % increase in mean annual stream flow was about 6% for the T+2&deg;C &amp; P+10% scenario and the minimum % decrease in mean annual stream flow observed was about 11% for T+1&deg;C &amp; P-10% scenario. The present study aims to provide information for planning of climate change adaptation strategies for the Subansiri sub-basin of the Brahmaputra River.</p> </div> <p>&nbsp;</p>


Sign in / Sign up

Export Citation Format

Share Document