scholarly journals Common reflection surface methods in low fold coverage seismic data of complex marine geological structures

Author(s):  
D Safitri ◽  
T B Nainggolan ◽  
H M Manik
2016 ◽  
Vol 13 (2) ◽  
pp. 119
Author(s):  
Subarsyah Subarsyah ◽  
Yulinar Firdaus

Kenampakan struktur geologi dan kontinuitas reflektor pada penampang seismik seringkali tidak teridentifikasi ketika data seismik di stack menggunakan metode stacking konvensional, terutama untuk data dengan jumlah fold coverage yang kecil. Data seismik Puslitbang Geologi Kelautan yang diperoleh pada Mei 2015, di Perairan Timur Pulau Waigeo, memiliki fold coverage yang relatif rendah sekitar 20. Untuk meningkatkan kualitas penampang seismik pada data ini perlu diterapkan metode Common Reflection Surface(CRS) sehingga interpretasi struktur geologi lebih mudah dan kontinuitas reflektor lebih baik. Metode ini diaplikasikan terhadap data seismik lintasan 6 dan 37. Penerapan metode CRS memberikan perbaikan pada citra penampang seismik terutama pada bagian basement akustik dan kontinuitas reflektor. Metode ini memberikan citra penampang seismik yang relatif lebih baik dibandingkan metode stacking konvensional karena metode CRS melibatkan trace seismik dari CDP di sekitarnya sesuai dengan besar parameter aperturnya. Kata kunci CRS Stack, CRS Attribut dan Paraxial Geological structure and reflector continuity on seismic section are often not clearly identified when the seismic data stacked use conventional stacking, especially seismic data with small fold coverage. Seismics data of Puslitbang Geologi Kelautan, that have been acquired on Mei 2015,in eastern part of Waigeo Island, have small number of fold coverage about 20. To enhance quality of seismic section on this data, it is necessary to apply Common Reflection Surface (CRS) method, in order to make geological structure interpretation easier dan better reflector continuity. This method applied to seismic data line 6 and 37. This application gives enhancement to seismic section especially at acoustic basement and reflector continuity. CRS method gives better seismic section than conventional stacking due to stacking process that involve seismic trace around the CDP along its aperture size. Keywords: CRS Stack, CRS Attribut and Paraxial


2020 ◽  
Vol 68 (7) ◽  
pp. 2046-2063
Author(s):  
Raphael Di Carlo Silva dos Santos ◽  
João Carlos Ribeiro Cruz ◽  
Manuel de Jesus dos Santos Costa

1996 ◽  
Vol 36 (1) ◽  
pp. 490
Author(s):  
D.H. Sherlock ◽  
B.J. Evans ◽  
C.C. Ford

Analogue sandbox models provide cheap, concise data and allow the evolution of geological structures to be observed under controlled conditions in a laboratory. Seismic physical modelling is used to study the effects of seismic wave propagation in isotropic and anisotropic media and to improve methods of data acquisition, processing and interpretation. These two independent geological modelling techniques have been linked for the first time, to combine and expand the existing benefits of each method.Seismic physical modelling to date has employed solid models, constructed with pre-determined structures built into the model. Previous attempts to adapt this technology to unconsolidated materials failed due to the severe energy attenuation of seismic waves in cohesionless grain matrices, and excessive signal scatter due to scaling limitations of the geological feature size to wavelength ratio. This paper presents our research to overcome these problems and thereby allow the successful seismic imaging of sandbox models.A number of techniques have been developed to combine these two independent modelling methods and results show that it is possible to image several layers within the models, demonstrating the potential to interpret complex geological structures within such models. For seismic modelling, the main advantages are that the seismic data collected from these models contain natural variation that cannot be built into solid models, which results in a more realistic image, and the cost and construction time of the models are also dramatically reduced. For sandbox modelling, the recording of seismic data over them allows far more detailed interpretation of the structures than previously possible and also allows direct comparison with field data for the first time, to substantiate or negate an existing interpretation.


Geophysics ◽  
2020 ◽  
pp. 1-98
Author(s):  
Bo Yu ◽  
Hui Zhou ◽  
Lingqian Wang ◽  
Wenling Liu

Bayesian statistical inversion can integrate diverse datasets to infer the posterior probability distributions of subsurface elastic properties. However, certain existing methods may suffer from two issues in practical applications, namely spatial discontinuities and the uncertainty caused by the low-quality seismic traces. These limitations are evident in prestack statistical inversion since some traces in prestack angle gathers may be missing or low-quality. We propose a prestack Bayesian statistical inversion method constrained by reflection features to alleviate these issues. Based on a Bayesian linearized inversion framework, the proposed inversion approach is implemented by integrating the prestack seismic data with reflection features. The reflection features are captured from the poststack seismic profile, and they represent the relationships of the reflection coefficients between different traces. By utilizing the proposed approach, we are able to achieve superior inversion results and to evaluate inversion uncertainty simultaneously even with the low-quality prestack seismic data. The results of the synthetic and field data tests confirm the theoretical and practical effects of the reflection features on improving inversion continuity and accuracy and reducing inversion uncertainty. Moreover, this work gives a novel way to integrate the information of geological structures in statistical inversion methods. Other geological information, which can be linearized accurately or approximately, can be utilized in this manner.


2016 ◽  
Vol 34 (2) ◽  
Author(s):  
Washington Oliveira Martins ◽  
Milton José Porsani ◽  
Michelângelo G. da Silva

ABSTRACT. We applied an adaptive seismic data filtering method, based on the singular value decomposition (SVD) to improve the identification of reflectors and geological structures in 3D stacked seismic volumes...Keywords: seismic data processing, SVD filtering, 3D pos-stacked filtering, adaptive filtering. RESUMO. Nós aplicamos um método de filtragem adaptativa de dados sísmicos, baseado na decomposição em valores singulares (SVD), para melhorar a identificação de refletores e estruturas geológicas em volumes sísmicos empilhados 3D...Palavras-chave: processamento sísmico, filtragem SVD, filtragem pós-stack 3D, filtragem adaptativa.


Sign in / Sign up

Export Citation Format

Share Document