scholarly journals PERBAIKAN CITRA PENAMPANG SEISMIK MENGGUNAKAN METODE COMMON REFLECTION SURFACE : APLIKASI TERHADAP DATA SEISMIK PERAIRAN WAIGEO

2016 ◽  
Vol 13 (2) ◽  
pp. 119
Author(s):  
Subarsyah Subarsyah ◽  
Yulinar Firdaus

Kenampakan struktur geologi dan kontinuitas reflektor pada penampang seismik seringkali tidak teridentifikasi ketika data seismik di stack menggunakan metode stacking konvensional, terutama untuk data dengan jumlah fold coverage yang kecil. Data seismik Puslitbang Geologi Kelautan yang diperoleh pada Mei 2015, di Perairan Timur Pulau Waigeo, memiliki fold coverage yang relatif rendah sekitar 20. Untuk meningkatkan kualitas penampang seismik pada data ini perlu diterapkan metode Common Reflection Surface(CRS) sehingga interpretasi struktur geologi lebih mudah dan kontinuitas reflektor lebih baik. Metode ini diaplikasikan terhadap data seismik lintasan 6 dan 37. Penerapan metode CRS memberikan perbaikan pada citra penampang seismik terutama pada bagian basement akustik dan kontinuitas reflektor. Metode ini memberikan citra penampang seismik yang relatif lebih baik dibandingkan metode stacking konvensional karena metode CRS melibatkan trace seismik dari CDP di sekitarnya sesuai dengan besar parameter aperturnya. Kata kunci CRS Stack, CRS Attribut dan Paraxial Geological structure and reflector continuity on seismic section are often not clearly identified when the seismic data stacked use conventional stacking, especially seismic data with small fold coverage. Seismics data of Puslitbang Geologi Kelautan, that have been acquired on Mei 2015,in eastern part of Waigeo Island, have small number of fold coverage about 20. To enhance quality of seismic section on this data, it is necessary to apply Common Reflection Surface (CRS) method, in order to make geological structure interpretation easier dan better reflector continuity. This method applied to seismic data line 6 and 37. This application gives enhancement to seismic section especially at acoustic basement and reflector continuity. CRS method gives better seismic section than conventional stacking due to stacking process that involve seismic trace around the CDP along its aperture size. Keywords: CRS Stack, CRS Attribut and Paraxial

Geophysics ◽  
2009 ◽  
Vol 74 (3) ◽  
pp. V49-V58 ◽  
Author(s):  
Mikhail Baykulov ◽  
Dirk Gajewski

We developed a new partial common-reflection-surface (CRS) stacking method to enhance the quality of sparse low-fold seismic data. For this purpose, we use kinematic wavefield attributes computed during the automatic CRS stack. We apply a multiparameter CRS traveltime formula to compute partial stacked CRS supergathers. Our algorithm allows us to generate NMO-uncorrected gathers without the application of inverse NMO/DMO. Gathers obtained by this approach are regularized and have better signal-to-noise ratio compared with original common-midpoint gathers. Instead of the original data, these improved prestack data can be used in many conventional processing steps, e.g., velocity analysis or prestack depth migration, providing enhanced images and better quality control. We verified the method on 2D synthetic data and applied it to low-fold land data from northern Germany. The synthetic examples show the robustness of the partial CRS stack in the presence of noise. Sparse land data became regularized, and the signal-to-noise ratio of the seismograms increased as a result of the partial CRS stack. Prestack depth migration of the generated partially stacked CRS supergathers produced significantly improved common-image gathers as well as depth-migrated sections.


2021 ◽  
Author(s):  
Adam Cygal ◽  
Michał Stefaniuk ◽  
Anna Kret

AbstractThis article presents the results of an integrated interpretation of measurements made using Audio-Magnetotellurics and Seismic Reflection geophysical methods. The obtained results were used to build an integrated geophysical model of shallow subsurface cover consisting of Cenozoic deposits, which then formed the basis for a detailed lithological and tectonic interpretation of deeper Mesozoic sediments. Such shallow covers, consisting mainly of glacial Pleistocene deposits, are typical for central and northern Poland. This investigation concentrated on delineating the accurate geometry of Obrzycko Cenozoic graben structure filled with loose deposits, as it was of great importance to the acquisition, processing and interpretation of seismic data that was to reveal the tectonic structure of the Cretaceous and Jurassic sediments which underly the study area. Previously, some problems with estimation of seismic static corrections over similar grabens filled with more recent, low-velocity deposits were encountered. Therefore, a novel approach to estimating the exact thickness of such shallow cover consisting of low-velocity deposits was applied in the presented investigation. The study shows that some alternative geophysical data sets (such as magnetotellurics) can be used to significantly improve the imaging of geological structure in areas where seismic data are very distorted or too noisy to be used alone


2021 ◽  
Author(s):  
Vladimir Cheverda ◽  
Vadim Lisitsa ◽  
Maksim Protasov ◽  
Galina Reshetova ◽  
Andrey Ledyaev ◽  
...  

Abstract To develop the optimal strategy for developing a hydrocarbon field, one should know in fine detail its geological structure. More and more attention has been paid to cavernous-fractured reservoirs within the carbonate environment in the last decades. This article presents a technology for three-dimensional computing images of such reservoirs using scattered seismic waves. To verify it, we built a particular synthetic model, a digital twin of one of the licensed objects in the north of Eastern Siberia. One distinctive feature of this digital twin is the representation of faults not as some ideal slip surfaces but as three-dimensional geological bodies filled with tectonic breccias. To simulate such breccias and the geometry of these bodies, we performed a series of numerical experiments based on the discrete elements technique. The purpose of these experiments is the simulation of the geomechanical processes of fault formation. For the digital twin constructed, we performed full-scale 3D seismic modeling, which made it possible to conduct fully controlled numerical experiments on the construction of wave images and, on this basis, to propose an optimal seismic data processing graph.


Geophysics ◽  
1984 ◽  
Vol 49 (8) ◽  
pp. 1223-1238 ◽  
Author(s):  
John T. Kuo ◽  
Ting‐fan Dai

In taking into account both compressional (P) and shear (S) waves, more geologic information can likely be extracted from the seismic data. The presence of shear and converted shear waves in both land and marine seismic data recordings calls for the development of elastic wave‐migration methods. The migration method presently developed consists of simultaneous migration of P- and S-waves for offset seismic data based on the Kirchhoff‐Helmholtz type integrals for elastic waves. A new principle of simultaneously migrating both P- and S-waves is introduced. The present method, named the Kirchhoff elastic wave migration, has been tested using the 2-D synthetic surface data calculated from several elastic models of a dipping layer (including a horizontal layer), a composite dipping and horizontal layer, and two layers over a half‐space. The results of these tests not only assure the feasibility of this migration scheme, but also demonstrate that enhanced images in the migrated sections are well formed. Moreover, the signal‐to‐noise ratio increases in the migrated seismic section by this elastic wave migration, as compared with that using the Kirchhoff acoustic (P-) wave migration alone. This migration scheme has about the same order of sensitivity of migration velocity variations, if [Formula: see text] and [Formula: see text] vary concordantly, to the recovery of the reflector as that of the Kirchhoff acoustic (P-) wave migration. In addition, the sensitivity of image quality to the perturbation of [Formula: see text] has also been tested by varying either [Formula: see text] or [Formula: see text]. For varying [Formula: see text] (with [Formula: see text] fixed), the migrated images are virtually unaffected on the [Formula: see text] depth section while they are affected on the [Formula: see text] depth section. For varying [Formula: see text] (with [Formula: see text] fixed), the migrated images are affected on both the [Formula: see text] and [Formula: see text] depth sections.


2016 ◽  
Vol 4 (3) ◽  
pp. T395-T402 ◽  
Author(s):  
Euan J. Macrae ◽  
Clare E. Bond ◽  
Zoe K. Shipton ◽  
Rebecca J. Lunn

Geologic models are based on the interpretation of spatially sparse and limited resolution data sets. Nonunique interpretations often exist, resulting in commercial, safety, and environmental risks. We surveyed 444 experienced geoscientists to assess the validity of their interpretations of a seismic section for which multiple concepts honor the data. The most statistically influential factor in improving interpretation was writing about geologic time. A randomized controlled trial identified for the first time a significant causal link between being explicitly requested to describe the temporal geologic evolution of an interpretation and increased interpretation quality. These results have important implications for interpreting geologic data and communicating uncertainty in models.


2021 ◽  
Vol 43 (4) ◽  
pp. 199-216
Author(s):  
N.P. Yusubov ◽  
I.S. Guliyev

The high degree of knowledge of the upper horizons of the sedimentary cover of the Middle and South Caspian depressions, given an insufficient increase in hydrocarbon reserves, leads to the need for a detailed approach to the search for oil and gas deposits in deep-seated sediments (over 6 km). During the geological interpretation of new highly informative seismic data, as well as data of deep drilling and petrological core studies, there were revealed obvious shortcomings in the concepts of the origin and evolution of the Middle and South Caspian depressions. These ideas misinterpret evolution, especially the South Caspian Basin, which is characterized by a number of unique features: very thick sedimentary cover (up to 22 km), extremely high sedimentation rate, low heat flow and reservoir temperatures, abnormally high pore and reservoir pressures, high clay content of the section, etc. The main purpose of the study was to elucidate the regional structure and features of the dissection of the sedimentary cover of the Middle and South Caspian depressions, the conditions of occurrence and distribution of facies and thicknesses of individual complexes of deposits. The paper analyzes the results of some previous studies of the geological structure of the Middle and South Caspian depressions based on the data of deep seismic sounding, seismological and gravimetric observations. We consider the main conclusions of these studies, about the geological structure of the sedimentary complex of the region’s, very outdated and subject to revision. The results of seismic stratigraphic analysis of seismic data allowed the authors to identify new data about the tectonic structure and express a completely different point of view regarding the structure of the sedimentary cover in the region. The work also touches on the issue associated with the tectonics of the region and the alleged subduction zone here.


2016 ◽  
Vol 12 (3) ◽  
pp. 145
Author(s):  
Subarsyah Subarsyah ◽  
Tumpal Benhard Nainggolan

Interferensi water-bottom multipel terhadap reflektor primer menimbulkan efek bersifat destruktif yang menyebabkan penampang seismik menjadi tidak tepat akibat kehadiran reflektor semu. Teknik demultiple perlu diaplikasikan untuk mengatenuasi multipel. Transformasi parabolic radon merupakan teknik atenuasi multipel dengan metode pemisahan dalam domain radon. Multipel sering teridentifikasi pada penampang seismik. Untuk memperbaiki penampang seismik akan dilakukan dengan metode transformasi parabolic radon. Penerapan metode ini mengakibatkan reflektor multipel melemah dan tereduksi setelah dilakukan muting dalam domain radon terhadap zona multipel. Beberapa reflektor primer juga ikut melemah akibat pemisahan dalam domain radon yang kurang optimal, pemisahan akan optimal membutuhkan distribusi offset yang lebar. Kata kunci: Parabolic radon, multipel, atenuasi Water-bottom mutiple interference often destructively interfere with primary reflection that led to incorrect seismic section due to presence apparent reflector. Demultiple techniques need to be applied to attenuate the multiple. Parabolic Radon transform is demultiple attenuation technique that separate multiple and primary in radon domain. Water-bottom mutiple ussualy appear and easly identified on seismic data, parabolic radon transform applied to improve the seismic section. Application of this method to data showing multiple reflectors weakened and reduced after muting multiple zones in the radon domain. Some of the primary reflector also weakened due to bad separation in radon domain, optimal separation will require a wide distribution of offsets. Keywords: Parabolic radon, multiple, attenuation


Author(s):  
Agnieszka Gontaszewska ◽  
Andrezej Krainski

In paper an influence of waste dump “Chrobrów” on groundwater and tributary of the Bóbr river was described. This waste dump was installed in former gravel excavation. For first 10 years it had no leak stopper and sewage water could freely infiltrate. Geological structure of the waste dump subsoil is unfavourable because garbage are directly stored on gravels with high filtration coefficient which make migration of pollutants easy. At the moment the waste dump has a leak stopper made from bentonite composite but there are still polluted groundsunderneath. In this paper was analyzed data about ground- and surface water quality from years 1994 – 2004. It was found that the quality of groundwater deteriorated, especially in years 1999 and 2002. The most worsening was noted in case of chlorides, ammonia nitrogen, sodium and potassium. Unfortunately there is no data before 1994 so there is no information about hydrogeochemical background. Increased values of all groundwater components infirst period of investigation are results of exploitation in years 1984 – 1994, when waste dump had no leak stopper.But later deterioration of groundwater quality can not be explained in this way. It should be drawn a conclusion that the seal of waste dump bottom does not work correctly. It was found that there is no negative impact of waste dump on surface water what is caused by absence of hydraulic contact between river and groundwater on investigated area.


Sign in / Sign up

Export Citation Format

Share Document