scholarly journals Numerical Simulation Study on Progressive Extrusion Forming Process of Clutch Hub Gear

Author(s):  
Yangyang Jia ◽  
Shuqing Kou ◽  
Yifan Yan
Author(s):  
Yong-Mei Wang ◽  
Xiao-Peng Huang ◽  
Jin-Feng Wu ◽  
Wan-Xia Yang

Viscous heating has a substantial influence on the extrusion forming process and product quality of powder materials. This study selected the MUZL420 ring die pellet mill as the research object, from which a 3D flow physical model was established. The numerical simulation of 3D nonisothermal flow in the extrusion pelletizing process of granulated alfalfa was performed with POLYFLOW. The distribution laws of pressure, velocity, shear rate, viscosity, viscous heating and temperature in the flow field were revealed to thoroughly investigate the pelletizing process and provide a reference for structural optimization and process control. The results showed that two extrusion zones in the pelleting chamber were symmetrical with respect to the center, and the significant pressure gradient along the rotating direction of the ring die and the roller caused the material to flow back in the opposite direction. There were larger velocity gradients, shear rates and viscous heating levels in the deformation and compaction zone, the negative pressure zone behind the extrusion zone and the die holes. The distribution of viscosity was opposite to that of the shear rate. The temperature increase area caused by viscous heating gradually expanded from the material inlet to the bottom of the extrusion chamber along the [Formula: see text]-axis direction, and the temperature increased accordingly. The extrusion force and the forming temperature in the extrusion forming zone were captured in the numerical simulation. The extrusion forming density was calculated with the regression prediction model established through the simulation experiment of pelletizing with a ring die. Through a comparison with the results of mean alfalfa pellet density from the ring die pellet mill experiment, the relative error was less than 5%, which indicated that the numerical simulation method was reliable.


2013 ◽  
Vol 365-366 ◽  
pp. 1128-1131
Author(s):  
Zhi Yi Huo ◽  
Ying Zhi Li ◽  
Xiu Qian Sun ◽  
Qian Wang

Internal Defects are more likely to occur when 1Cr18Ni9Ti pipe joint are produced by traditional casting method or welding forming method, while the upsetting extrusion proposed in this essay can not only meet the part quality requirements, but also save material and shorten processing cycle. By numerical simulation analysis about part upsetting extrusion forming process with the finite element analysis method, we can obtain many index numerical values in part forming process, and therefore provide reliable quantitative basis for optimum design.


2012 ◽  
Vol 497 ◽  
pp. 356-364
Author(s):  
Qing Hua Yang ◽  
Jun Pan ◽  
Jun Xiong Zhang ◽  
Wen Biao Chen ◽  
Bin Meng

A three-layers assembled cavity die and its technological measures were designed for cold extrusion forming for the bevel gear. Numerical simulation of the cold extrusion forming process was applied using Deform-3D software, load curve, velocity field, stress field and temperature field were analyzed, thus obtain the basic knowledge of the law of the bevel gear deformation. Subsequent targets for optimization were introduced, aiming to solve the remaining problems of the current cold extrusion forming. The accomplished work shows some significance in guiding how to design a die and its technological measures.


2011 ◽  
Vol 704-705 ◽  
pp. 1492-1497
Author(s):  
Ji Shun Song ◽  
Yun Tao Li ◽  
De Heng Du ◽  
Xu Ma ◽  
Kang Yin

Eccentric extrusion method is used in this paper,through this method achieved bending aluminum-alloy tube extrusion forming process. Used finite element method,achieved three-dimensional numerical simulation of bending aluminum-alloy tube in eccentric extrusion by DEFORM-3D finite element commercial software,analyzed velocity field distribution,material flow,squeezing pressure,stress and strain field distribution of the process;Introduce the mechanism of one step direct extrusion forming tube bending process,it will be of great guiding significance the actual die design.


2013 ◽  
Vol 706-708 ◽  
pp. 444-447
Author(s):  
Qing Qing Lv ◽  
Li Quan Yang ◽  
Xiu Ting Lv ◽  
Lei Zhao ◽  
Xi Kui Wang

In order to obtain high-quality injection head, cold extrusion forming is adopted. Based on the study of forming technology for the injection head, reasonable process flow, cold extrusion pre-treatment process and boundary conditions are designed. Two finite element models in forward extrusion and backward extrusion forming ways are established. Taking DEFORM as the platform, the numerical simulation of forming process is carried out. Through simulation, the distribution of strain field, stress field and velocity field in the process of cold extrusion forming is preliminarily forecast, the merits and defects of two kinds of forming processes and the force state of mold are compared , the optimal forming scheme is determined.


2014 ◽  
Vol 487 ◽  
pp. 127-130 ◽  
Author(s):  
Guo Liang Fu ◽  
Zhi Yi Huo ◽  
Li Po Zhao ◽  
Qian Wang

Stainless steel pipe joint parts is the most important parts to join the stress pipeline. internal defects are more likely to occur when stainless steel joint part is produced by traditional casting method or welding forming method, while the upsetting extrusion proposed in this essay can not only meet the part quality requirements, but also save material and shorten processing cycle. By numerical simulation analysis about part upsetting extrusion forming process with the finite element analysis method, we can obtain many index numerical values in part forming process, and therefore provide reliable quantitative basis for optimum design.


2020 ◽  
Vol 47 (4) ◽  
pp. 371-385
Author(s):  
Kaisheng Zhang ◽  
Chaofan Ma ◽  
Baocheng Zhang ◽  
Bo Zhao ◽  
Qiang Wang

Sign in / Sign up

Export Citation Format

Share Document