scholarly journals The impacts of land use and cover changes on ecosystem services value in urban highland areas

Author(s):  
A Achmad ◽  
I Ramli ◽  
M Irwansyah
2020 ◽  
Vol 198 ◽  
pp. 04026
Author(s):  
Liyan Wang ◽  
Chao Chen ◽  
Kai Wang

It is an effective method to study the value change of ecological services based on land use and cover change information. This paper analyzed the land use and cover change information in the research area, which is based on the remote sensing images and social statistics data of 2005, 2010, and 2015, and then, quantitative estimation of the ecosystem service value was performed. Yangtze-Huaihe river basin, China is a fragile ecological area, which is selected as the research area. During 2005-2015, the area of cultivated land and construction land was the main land use types in the study area, the land use and cover change in the study area were obvious, which was characterized by the increasing of construction land area and the decreasing of cultivated land area, and the total ecosystem services value in the research area has been decreasing continuously, the value from 34.376 billion yuan in 2005 to 26.161 billion yuan in 2015.


2021 ◽  
Vol 20 (1) ◽  
pp. 1-16
Author(s):  
Vo Thanh Son ◽  
◽  
Luu The Anh ◽  
Dao Minh Truong ◽  
Trong Dai Ly ◽  
...  

Assessment of ecosystem services is vital for successful natural resource allocation; however, these have been less studied within Vietnam. This study estimated the ecosystem services value (ESV) and its change in Cham Chu nature reserve, Vietnam using a benefit transfer method. Ecosystem service values estimation and trend analyses were carried out based on land use and land cover datasets from 1986, 1998, 2007, and 2017, with their corresponding global value coefficients. The results revealed that the total value of ecosystem services in Cham Chu was approximately 64.4, 63.9, 60.7, and 63.4 million USD in 1986, 1998, 2007, and 2017, respectively. Changes have also occurred in the values of individual ecosystem service functions. From 1986 to 2017, ecosystem service functions showed significant decreases in gas regulation, pollination, biological control, water regulation, water supply, and food production of 62.9%, 51.2%, 44.4%, 24.7%, 23.1%, and 13.0%, respectively. We conclude that the loss of ESV is a result of ecological deterioration in the studied landscape, and we propose further research to examine future solutions and establish action strategies. In summary, the research approach methodology developed can be used by land managers and planners in Vietnam as a guideline to estimate the importance of ecosystem services in Vietnam.


Author(s):  
Xufeng Cui ◽  
Cuicui Liu ◽  
Ling Shan ◽  
Jiaqi Lin ◽  
Jing Zhang ◽  
...  

Exploring the changes of ecosystem services value caused by land use transformation driven by urbanization is crucial for ensuring the safety of the regional ecological environment and for enhancing the value of ecosystem services. Based on the land use remote sensing data during the rapid urbanization development period of Hubei Province from 1995 to 2015, this study analyzed the characteristics of land use/land cover change and land use transformation. The spatial–temporal response characteristics and evolution of ecosystem services value (ESV) to land use transformation driven by urbanization were measured by equivalent factor method, spatial autocorrelation analysis, hot spot analysis and gravity model. We found that: (1) Driven by urbanization, the most significant feature of land use transformation in Hubei Province was the expansion of the built-up land and the significant reduction of cropland and forest, among which 90% of the new built-up land was converted from cropland and forest. (2) This land use transformation became the main source of ESV losses. Especially, the sharp increase of the built-up land from 2010 to 2015, occupying cropland and forest, resulted in ESV losses of nearly USD 320 million. The service capacity of climate regulation, soil conservation, gas regulation and food production undertaken by cropland and forest decreased. (3) The ecosystem services value in the study area showed spatial distribution characteristics of high in the west and low in the middle and east regions. The center of gravity of ESV shifted from northwest to southeast. Due to the sharp increase of the built-up land from 2010 to 2015, the center of gravity shift rebounded. This study can help policymakers better understand the trade−offs between land use transformation and ecosystem services driven by urbanization.


2020 ◽  
Vol 118 ◽  
pp. 106711
Author(s):  
Zhe Tan ◽  
Qingyu Guan ◽  
Jinkuo Lin ◽  
Liqin Yang ◽  
Haiping Luo ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 4449
Author(s):  
Yajing Shao ◽  
Xuefeng Yuan ◽  
Chaoqun Ma ◽  
Ruifang Ma ◽  
Zhaoxia Ren

The impact of land use and land cover (LULC) change on ecosystem services value (ESV) varies in different spatial locations. Although many studies have focused on quantifying the effect of LULC change on ESV, few have considered the spatial heterogeneity of the relationship between LULC change and ESV. Therefore, this study examines the relationship between ESV and LULC change from a spatial perspective in Xi’an City. We divide the study area into 10,522 grid cells, based on land cover data from 2000 to 2018, and we identify the spatial-temporal dynamics of LULC change. Next, we employ the Benefits Transfer Method (BTM) to evaluate the ESV, and the ESV is corrected by the normalized difference vegetation index (NDVI). A geographically weighted regression (GWR) model and ordinary least squares (OLS) regression model are used to assess the spatial association of LULC change and ESV. The results show that the total ESV loss is 6.57 billion yuan (Chinese yuan), and the loss rate is 12.18%. The distribution of ESV shows an obvious spatial heterogeneity, and the low-value area of ESV expands eastward from the main urban area. More than 50% of total ESV is provided by woodland. From 2000 to 2018, the land use pattern in Xi’an underwent a significant change with the developed land increasing by 64.09%, whereas farmland decreased by 12.49%. Based on the GWR model, the relationship between LULC change and ESV in Xi’an showed a significant negative association and spatial heterogeneity. Our study results provide a new way to effectively identify the relationship between LULC change and ESV, and in turn, to fully understand the ecological trends at the regional scale, laying a foundation for regional sustainable development.


Sign in / Sign up

Export Citation Format

Share Document