scholarly journals The application of PAC and PAM in dynamic treatment of beryllium copper wastewater

Author(s):  
Yang Shi
Alloy Digest ◽  
1973 ◽  
Vol 22 (9) ◽  

Abstract BERYLCO 25 is the standard high-performance beryllium copper alloy most widely used because of its high strength, hardness and excellent spring characteristics. BERYLCO 25 is the updated version of BERYLCO 25S (Alloy Digest Cu-3, November 1952). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-271. Producer or source: Kawecki Berylco Industries Inc..


Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1992 ◽  
Vol 41 (8) ◽  

Abstract BRUSH CASTING ALLOY 21C is a beryllium copper alloy of high strength with cobalt as the second alloying element (1.0 to 2.0% Co). Use is in age-hardened temper. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on casting, heat treating, and machining. Filing Code: Cu-575. Producer or source: Brush Wellman Inc..


Alloy Digest ◽  
1970 ◽  
Vol 19 (6) ◽  

Abstract BRUSH alloy M25 is a free-machining beryllium-copper alloy having good response to age-hardening for high strength, hardness, fatigue and corrosion resistance. It is recommended for screw machine products, gears, shafts, hardware, fasteners, connectors, electronic and electrical components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-217. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
2009 ◽  
Vol 58 (9) ◽  

Abstract Carpenter ACUBE 100 Alloy is cobalt-base and exhibits corrosion resistance and wear resistance. The alloy was designed as direct replacement of beryllium copper alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming, heat treating, and machining. Filing Code: CO-117. Producer or source: Carpenter Specialty Alloys.


Alloy Digest ◽  
1985 ◽  
Vol 34 (12) ◽  

Abstract Copper Alloy No. C81400 is a precipitation-hardenable alloy of moderate hardness and strength. Its common name is beryllium-modified chromium copper and a previous trade name was Beryllium Copper 70C. Because of its beryllium content, its manufacture may present a health hazard. Typical uses comprise electrical parts that meet RWMA (Resistance Wire Manufacturer's Association) Class II standards. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-504. Producer or source: Copper alloy foundries.


Alloy Digest ◽  
1968 ◽  
Vol 17 (12) ◽  

Abstract Brush Alloy 190 is a mill-heat treated beryllium copper strip with a tensile strength up to 190,000 psi. It eliminates the need of customer heat-treating by providing high properties combined with exceptional formability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, joining, and surface treatment. Filing Code: Cu-194. Producer or source: Brush Beryllium Company.


2021 ◽  
Author(s):  
Stav Belogolovsky ◽  
Philip Korsunsky ◽  
Shie Mannor ◽  
Chen Tessler ◽  
Tom Zahavy

AbstractWe consider the task of Inverse Reinforcement Learning in Contextual Markov Decision Processes (MDPs). In this setting, contexts, which define the reward and transition kernel, are sampled from a distribution. In addition, although the reward is a function of the context, it is not provided to the agent. Instead, the agent observes demonstrations from an optimal policy. The goal is to learn the reward mapping, such that the agent will act optimally even when encountering previously unseen contexts, also known as zero-shot transfer. We formulate this problem as a non-differential convex optimization problem and propose a novel algorithm to compute its subgradients. Based on this scheme, we analyze several methods both theoretically, where we compare the sample complexity and scalability, and empirically. Most importantly, we show both theoretically and empirically that our algorithms perform zero-shot transfer (generalize to new and unseen contexts). Specifically, we present empirical experiments in a dynamic treatment regime, where the goal is to learn a reward function which explains the behavior of expert physicians based on recorded data of them treating patients diagnosed with sepsis.


Author(s):  
Jorge Rodríguez ◽  
Fernando Saltiel ◽  
Sergio Urzúa

Sign in / Sign up

Export Citation Format

Share Document