scholarly journals Estimating Thermal Effect of a Group of Gas Wells on Permafrost Rock

Author(s):  
V A Ivanov ◽  
I I Rozhin
2014 ◽  
Vol 21 ◽  
pp. 255-259 ◽  
Author(s):  
Jun Li ◽  
Boyun Guo ◽  
Shunji Yang ◽  
Gonghui Liu

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3751
Author(s):  
Sen Yang ◽  
Fengpeng Lai ◽  
Zhiping Li ◽  
Yingkun Fu ◽  
Kongjie Wang ◽  
...  

During hydraulic fracturing, there is a temperature difference between the injected water and formation rock for shale gas wells. The objective of this study is to investigate how this temperature difference changes with time, and how it affects multiphase-flow modeling during the shut-in and flowback periods. We conducted numerical simulations to investigate the behaviors of fracture temperature in shale gas wells. The results show a significant increase in fracture temperature during the shut-in and flowback periods. Sensitivity analysis suggests that this temperature increase is strongly related to the thermal conductivity of formation rock, matrix permeability, and initial reservoir temperature. Simulation scenarios were further compared to investigate the effect of temperature on flowback data analysis. Without considering the thermal effect, flowback data analysis may yield an earlier fracture cleanup and overestimated fracture volume. In addition, this study suggests that the thermal effect may also have implications for optimizing flowback operations.


Author(s):  
T. Sato ◽  
S. Kitamura ◽  
T. Sueyoshl ◽  
M. Iwatukl ◽  
C. Nielsen

Recently, the growth process and relaxation process of crystalline structures were studied by observing a SI nano-pyramid which was built on a Si surface with a UHV-STM. A UHV-STM (JEOL JSTM-4000×V) was used for studying a heated specimen, and the specimen was kept at high temperature during observation. In this study, the nano-fabrication technique utilizing the electromigration effect between the STM tip and the specimen was applied. We observed Si atoms migrated towords the tip on a high temperature Si surface.Clean surfaces of Si(lll)7×7 and Si(001)2×l were prepared In the UHV-STM at a temperature of approximately 600 °C. A Si nano-pyramid was built on the Si surface at a tunneling current of l0nA and a specimen bias voltage of approximately 0V in both polarities. During the formation of the pyramid, Images could not be observed because the tip was stopped on the sample. After the formation was completed, the pyramid Image was observed with the same tip. After Imaging was started again, the relaxation process of the pyramid started due to thermal effect.


2017 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Kathryn Bills Walsh

This case presents the stakeholder conflicts that emerge during the development and subsequent reclamation of abandoned natural gas wells in Wyoming where split estate, or the separation of surface land and mineral rights from one another, occurs. From 1998 to 2008, the Powder River Basin of northeastern Wyoming experienced an energy boom as a result of technological innovation that enabled the extraction of coalbed methane (CBM). The boom resulted in over 16,000 wells being drilled in this 20,000 square-mile region in a single decade. As of May 2017, 4,149 natural gas wells now sit orphaned in Wyoming as a result of industry bankruptcy and abandonment. The current orphaned wells crisis was partially enabled by the patchwork of surface and mineral ownership in Wyoming that is a result of a legal condition referred to as split estate. As the CBM boom unfolded in this landscape and then began to wane, challenges emerged most notably surrounding stalled reclamation activities. This case illuminates these challenges highlighting two instances when split estate contributed to issues between landowners and industry operators which escalated to litigation.


Sign in / Sign up

Export Citation Format

Share Document