Prediction of Temperature and Pressure Distribution in HTHP Injection Gas Wells with Thermal Effect of Wellbore

2013 ◽  
Vol 31 (14) ◽  
pp. 1423-1438
Author(s):  
J. Xu ◽  
J. Hu ◽  
Z. Wu ◽  
S. Wang ◽  
B. Qi
2020 ◽  
Vol 16 (6) ◽  
pp. 1243-1258
Author(s):  
Jinbo Liu ◽  
Ziheng Jiang ◽  
Xuezhang Feng ◽  
Ruiquan Liao ◽  
Dianfang Feng ◽  
...  

2018 ◽  
Vol 24 (9) ◽  
pp. 3729-3740 ◽  
Author(s):  
Julia Kosloh ◽  
Johannes Sackmann ◽  
Sebastian Krabbe ◽  
Werner Karl Schomburg

2013 ◽  
Vol 53 (1) ◽  
pp. 285
Author(s):  
Emile Barrett ◽  
Imran Abbasy ◽  
Chii-Rong Wu ◽  
Zhenjiang You ◽  
Pavel Bedrikovetsky

Estimation of rate profile along the well is important information for reservoir characterisation since it allows distinction of the production rates from different layers. The temperature and pressure sensors in a well are small and inexpensive; while flow meters are cumbersome and expensive, and affect the flow in the well. The method presented in this peer-reviewed paper shows its significance in predicting the gas rate from temperature and pressure data. A mathematical model for pressure and temperature distributions along a gas well has been developed. Temperature and pressure profiles from nine well intervals in field A (Cooper Basin, Australia) have been matched with the mathematical model to determine the flow rates from different layers in the well. The presented model considers the variables as functions of thermal properties at each location, which is more accurate and robust than previous methods. The results of tuning the mathematical model to the field data show good agreement with the model prediction. Simple and robust explicit formulae are derived for the effective estimation of flow rate and thermal conductivity in gas wells. The proposed approach has been applied to determine the well gas rate and formation thermal conductivity from the acquired well pressure and temperature data in field A. It allows for recommending well stimulation of layers with low production rates.


Author(s):  
Taehyun Park ◽  
Thomas J. Zimmerman ◽  
Daniel Park ◽  
Brooks Lowrey ◽  
Michael C. Murphy

A novel method of thermoplastic fusion bonding (TPFB), or thermal bonding, for polymer fluidic devices was demonstrated. A pressure cooker was used in a simple sealing and packaging process with precise control of the critical parameters. Polymer devices were enclosed in a vacuum-sealed polymer container. This produced an even pressure distribution and a precise temperature boundary condition over the whole surface of the device. Deformation indicators were integrated on the devices to provide a rapid means of checking deformation and pressure distribution with the naked eye. Temperature, pressure, and time are the fundamental parameters of TPFB. The temperature and pressure are dominated by the material and contact area of the device. The temperature and pressure can be manipulated by controlling the water vapor pressure. The boiling solution guarantees an accurate, constant temperature boundary condition. Time can be eliminated as a variable by choosing a sufficient time to achieve good bonding, since there was no apparent damage to the microstructures after one hour. This new method of TPFB was demonstrated for sealing and packaging a PMMA (polymethylmethacrylate) microfluidic device. Good results were obtained using the vacuum sealed polymer container in the pressure cooker. This method is also suitable for scaling up for mass production.


1999 ◽  
Vol 21 (1) ◽  
pp. 8-24
Author(s):  
Duong Ngoc Hai

In the paper the combination of collocation and factorization methods applied to numerical investigation of bubble-inside drop system dynamics is presented. Initially assumed bubble and drop have ellipsoidal forms. The initial relative location of the drop in the bubble is determined by equilibrium condition between drop weight and lift-force due to pressure distribution in gas/vapor. Calculations are implemented for the case of spherical bubble, drop without and with vaporization (thermal effect) and for the experimental case [6] with alumina drop in water in pressure waves.


Sign in / Sign up

Export Citation Format

Share Document