scholarly journals Driving-factors identification of land-cover change in west java using binary logistic regression based on geospatial data

Author(s):  
Udjianna Sekteria Pasaribu ◽  
Riantini Virtriana ◽  
Albertus Deliar ◽  
Irawan Sumarto
Author(s):  
Nur Ainiyah ◽  
Albertus Deliar ◽  
Riantini Virtriana

Land cover changes continuously change by the time. Many kind of phenomena is a simple of important factors that affect the environment change, both locally and also globally. To determine the existence of the phenomenon of land cover change in a region, it is necessary to identify the driving factors that can cause land cover change. The relation between driving factors and response variables can be evaluated by using regression analysis techniques. In this case, land cover change is a dichotomous phenomenon (binary). The BLR’s model (Binary Logistic Regression) is the one of kind regression analysis which can be used to describe the nature of dichotomy. Before performing regression analysis, correlation analysis is carried it the first. Both correlation test and regression tests are part of a statistical test or known classical assumption test. From result of classical assumption test, then can be seen that the data used to perform analysis from driving factors of the land cover changes is proper with used by BLR’s method. Therefore, the objective of this research is to evaluate the effectiveness of methods in assessing the relation between driving factors of land cover change that assumed can affect to land cover change phenomena. This research will use the classical assumed test of multiple regression linear analysis, showing that BLR method is efficiency and effectiveness solution for researching or studying in phenomenon of land cover changes. So it will to provide certainty that the regression equation obtained has accuracy in estimation, unbiased and consistent.


Author(s):  
Nur Ainiyah ◽  
Albertus Deliar ◽  
Riantini Virtriana

Land cover changes continuously change by the time. Many kind of phenomena is a simple of important factors that affect the environment change, both locally and also globally. To determine the existence of the phenomenon of land cover change in a region, it is necessary to identify the driving factors that can cause land cover change. The relation between driving factors and response variables can be evaluated by using regression analysis techniques. In this case, land cover change is a dichotomous phenomenon (binary). The BLR’s model (Binary Logistic Regression) is the one of kind regression analysis which can be used to describe the nature of dichotomy. Before performing regression analysis, correlation analysis is carried it the first. Both correlation test and regression tests are part of a statistical test or known classical assumption test. From result of classical assumption test, then can be seen that the data used to perform analysis from driving factors of the land cover changes is proper with used by BLR’s method. Therefore, the objective of this research is to evaluate the effectiveness of methods in assessing the relation between driving factors of land cover change that assumed can affect to land cover change phenomena. This research will use the classical assumed test of multiple regression linear analysis, showing that BLR method is efficiency and effectiveness solution for researching or studying in phenomenon of land cover changes. So it will to provide certainty that the regression equation obtained has accuracy in estimation, unbiased and consistent.


2019 ◽  
Vol 11 (23) ◽  
pp. 2784 ◽  
Author(s):  
Alysha van Duynhoven ◽  
Suzana Dragićević

Land cover change (LCC) is typically characterized by infrequent changes over space and time. Data-driven methods such as deep learning (DL) approaches have proven effective in many domains for predictive and classification tasks. When applied to geospatial data, sequential DL methods such as long short-term memory (LSTM) have yielded promising results in remote sensing and GIScience studies. However, the characteristics of geospatial datasets selected for use with these methods have demonstrated important implications on method performance. The number of data layers available, the rate of LCC, and inherent errors resulting from classification procedures are expected to influence model performance. Yet, it is unknown how these can affect compatibility with the LSTM method. As such, the main objective of this study is to explore the capacity of LSTM to forecast patterns that have emerged from LCC dynamics given varying temporal resolutions, persistent land cover classes, and auxiliary data layers pertaining to classification confidence. Stacked LSTM modeling approaches are applied to 17-year MODIS land cover datasets focused on the province of British Columbia, Canada. This geospatial data is reclassified to four major land cover (LC) classes during pre-processing procedures. The evaluation considers the dataset at variable temporal resolutions to demonstrate the significance of geospatial data characteristics on LSTM method performance in several scenarios. Results indicate that LSTM can be utilized for forecasting LCC patterns when there are few limitations on temporal intervals of the datasets provided. Likewise, this study demonstrates improved performance measures when there are classes that do not change. Furthermore, providing classification confidence data as ancillary input also demonstrated improved results when the number of timesteps or temporal resolution is limited. This study contributes to future applications of DL and LSTM methods for forecasting LCC.


2019 ◽  
Vol 697 ◽  
pp. 134206 ◽  
Author(s):  
Darius Phiri ◽  
Justin Morgenroth ◽  
Cong Xu

2015 ◽  
Author(s):  
Riantini Virtriana ◽  
Irawan Sumarto ◽  
Albertus Deliar ◽  
Udjianna S Pasaribu ◽  
Moh. Taufik

2016 ◽  
Vol 18 (2) ◽  
pp. 95 ◽  
Author(s):  
Irmadi Nahib

<p class="JudulABSInd"><strong>ABSTRAK</strong></p><p class="abstrak">Salah satu indikator perkembangan fisik wilayah kota dapat diidentifikasi melalui fenomena perubahan tutupan lahan bervegetasi menjadi lahan terbangun. Perubahan lahan tersebut dapat berdampak terhadap penurunan kualitas lingkungan, akibat berkurangnya ruang terbuka hijau. Kota Semarang dengan visi terwujudnya Semarang sebagai kota perdagangan dan jasa yang berbudaya menuju masyarakat sejahtera, merupakan  wilayah yang rentan mengalami perubahan penggunaan lahan yang cenderung kearah lahan terbangun. Penelitian ini mengintegrasikan model <em>Cellular Automata</em> (CA) dan regresi logistik biner untuk memprediksi dinamika lahan terbangun di Kota Semarang. Citra yang digunakan adalah Citra Ikonos 2002, Ikonos 2006 dan <em>Quic</em><em>kbird</em> 2012. Model CA pada penelitian ini digunakan untuk memprediksi sebaran penutup lahan tahun 2022 dan 2032 dengan mempertimbangkan jarak terhadap jalan, jarak terhadap sungai, jarak terhadap lahan terbangun, ketinggian, kepadatan penduduk, <em>evidence likelihood </em>perubahan lahan dan indeks pengembangan kelurahan yang diakomodasi dalam peta sub-model transisi hasil model regresi logistik biner. Hasil penyusunan model ini adalah peta prediksi penutup lahan dengan akurasi 78,21 % validitas model yang dihasilkan dapat dikategorikan “<em>moderate</em>” mengindikasikan bahwa peta yang dihasilkan dapat digunakan. Hasil pemodelan menunjukkan bahwa Kota Semarang pada tahun 2022 terjadi pertambahan luas lahan terbangun rata-rata 284 ha/tahun dan pada tahun 2032 rata-rata 226 ha/tahun.</p><p><strong><em>Kata </em></strong><strong><em>k</em></strong><strong><em>unci</em></strong><em>: </em><em>cellular automata, pemodelan, regresi logistik biner, lahan terbangun</em></p><p class="judulABS"><em><strong>ABSTRACT</strong></em></p><p class="Abstrakeng">One indicator of the physical development of the city can be identified by phenomenon of land expansion, vegetated land cover changes to be built-up area. The land use changes can impact to environmental degradation, due to reduced green open space. Semarang as a city of trade and services cultured toward a prosperous community, a region that is vulnerable to changes in land use tends toward small plots. This research integrates the model of Cellular Automata (CA) and binary logistic regression to predict the dynamics of builtup area in the city of Semarang. The image used is a Ikonos imagery (2002), Ikonos imagery (2006) and Quickbird (2012). Model CA in this research use to predict the distribution of land cover 2022 and 2032 with respect to: distance to roads, the distance to the river, the distance to the built-up area, elevation, population density, evidence likelihood of land use change and development villages index were accommodated in the map sub-model transition binary logistic regression model results. The results of this study are predictive maps of built-up area  with an accuracy of 78,21 % so that the validity of the resulting model can be categorized as "moderate", indicates that the probability map is valid. Modeling results showed that Semarang City in 2022 predicted rate of increase of  built-up area an average 284  ha / year and in 2032 rate of increase of built-up area an average 226 ha / year.</p><p><strong><em>Keywords</em></strong><em>: cellular automata, modelling, binary logistic regression, built-up area</em></p>


Sign in / Sign up

Export Citation Format

Share Document