scholarly journals Research On VSG Comprehensive Control Strategy For Power Grid Voltage Sag

Author(s):  
Yu Xiangyang ◽  
Lu Zekai ◽  
Ding yan ◽  
Gao Chunyang ◽  
Liu Shiyan ◽  
...  
2014 ◽  
Vol 644-650 ◽  
pp. 3509-3514
Author(s):  
Jian Hua Zhang ◽  
Hao Ran Shen ◽  
Lei Ding ◽  
Chun Lei Dai

In order to analyze the control strategy of the low voltage ride through (LVRT) of DFIG during the asymmetric voltage sag, it is necessary to analyze the transient performance of a DFIG during the asymmetric voltage sag. In this paper, analyzed the influence of the asymmetric grid voltage to DFIG and the analysis method of the asymmetric voltage sag, and on the basis of positive and negative sequence mathematical model, analyzed the composition of stator output active and reactive power under the condition of asymmetric grid voltage. And built a DFIG asymmetric voltage drop simulation model of 1.5MW in MATLAB/Simulink, the simulation results shows that the stator voltage, current, active power and reactive power all present a double frequency ripple during the asymmetric voltage sag, consistent with theoretical analysis. It can provide theoretical basis for double-fed motor control strategy of asymmetric LVRT.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6520
Author(s):  
Qiguo Han ◽  
Xing Wang ◽  
Pengfei Hu ◽  
Maolin Wang ◽  
Xu Luo ◽  
...  

The voltage ride through capability of the major auxiliary variable-frequency drive (VFD) in large thermal power plants is the key technical issue of power grid and source coordination. In order to test the high voltage ride through (HVRT) and low voltage ride through (LVRT) capability of the auxiliary VFD, it is necessary to develop a power supply to simulate different grid voltage sag and swell accurately. In this paper, a generator (VSSG) based on the common three-phase inverter circuit that can simulate multi-mode voltage sag/swell is proposed. The designed main circuit consisting of transformer, rectifier, DC split capacitors, three-phase inverter, and LC-filter can generate single-phase and three-phase voltage sag, swell, and phase angle jumping flexibly. The developed control strategies composed of the double closed-loop control and the neutral voltage balance control achieve accurate output, fast dynamic response, and step-less adjustment. Simulation and experiment results verify the multi-mode voltage simulation performances of the proposed VSSG, which can be effectively used to emulate power grid voltage sag and swell phenomena under the IEEE 1159 and IEC standards.


Author(s):  
Wenshao Bu ◽  
Chaochao Wang ◽  
Jinwei Li

Background: Aiming at the three-phase voltage source PWM rectifier (VSR), there have been some researches on the neural network control strategies, but the unbalanced power grid condition is always neglected. Meanwhile, about the self-detection technology of the unbalanced power grid voltage, there are still few researches. Methods: Under the unbalanced power grid conditions, this work presents a power grid voltage sensorless control strategy of the three-phase VSR. Based on the radial basis function neural network (RBF) theory, a newly PI controller with parameter self-tuning function is studied, and the RBF-PI controller is used for the closed-loop controls of the voltage and current variables. By means of T/4 delay method, the positive- and negative-sequence components of the power grid side current, and those of the equivalent virtual flux-linkage of unbalanced power grid are extracted. From the equivalent virtual flux-linkage, the unbalanced power grid voltage is reconstructed online. Results: Under the load mutation condition, the power grid voltage sensorless control of threephase VSR is achieved, the system response characteristics are analyzed. From the simulation experimental results, it can be seen that the unbalanced power grid voltage can be quickly tracked, and the sinusoidal control of the power grid side current can be achieved. In addition, the control system has a series of advantages, such as a faster dynamic response speed, a stronger robustness and a smaller DC side voltage ripple. Conclusion: The proposed unbalanced power grid voltage sensorless control strategy of threephase VSR is effective.


Author(s):  
Mingwen Zhuang ◽  
Jingteng Chen ◽  
Minhui Wu ◽  
Huibin Li ◽  
Liqian Lin ◽  
...  
Keyword(s):  

Author(s):  
Sharmin Rahman ◽  
Sajeeb Saha ◽  
Shama Naz Islam ◽  
M Arif ◽  
Mehdi Mosadeghy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document