scholarly journals Analysis on Log Response Characteristics of Oil Shale and In-situ Mining Geological Evaluation in Qingshankou Formation of South of Songliao Basin

Author(s):  
Guihua Tan
Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2964 ◽  
Author(s):  
Penglin Zhang ◽  
Yinbo Xu ◽  
Qingtao Meng ◽  
Zhaojun Liu ◽  
Jiaqiang Zhang ◽  
...  

The Songliao Basin contains some of the largest volumes of oil shales in China; however, these energy sources are located in areas covered by arable land, meaning that the best way of exploiting them is likely to be environmentally friendly in situ conversion processing (ICP). Whether the oil shales of the Songliao Basin in the Qingshankou Formation are suitable for ICP remain controversial. In this paper, through sequence stratigraphic correlations, three main thick oil shale layers (N1, N2, and N3) of the Sequence1 (Sq1) unit in the first member of Qingshankou Formation (K2qn1) are confirmed as consistently present throughout the Southeastern Uplift region of the basin. The spectral trend attributes reflect that the lake reached a maximum flood surface of the K2qn1 in N2 oil shale layer, and the total organic carbon (TOC) and Fischer assay (FA) oil yield are significantly increasing. The N2 and N3 oil shale layers were deposited in a high lake level environment associated with ingressions of ocean water. The oil shale in these layers with the characteristics of high TOC (maximum of 23.9 wt %; average of 7.2 wt %), abundance of aquatic organic matter (OM) (maximum hydrogen index (HI) of 1080.2 mg/g; average of 889.9 mg/g) and carbonate contents (maximum of 29.5%; average of 15.4%). The N2 and N3 oil shale layers have higher brittleness index (BI) values (generally 40–50%), larger cumulative thicknesses (maximum of 13.3 m; average of 12.0 m), and much higher source potential index (SPI) values (0.92 and 0.88 tHC/m2, respectively) than the N1 oil shale layer within Sq1 transgressive system tracts (TST), indicating that the N2 and N3 layers are prospective targets for ICP. In addition, oil shales buried to depths of <1000 m have strong hydrocarbon generation capacities that make them suitable for ICP.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.


2021 ◽  
Vol 155 ◽  
pp. 105050
Author(s):  
Young-Kwon Park ◽  
Muhammad Zain Siddiqui ◽  
Selhan Karagöz ◽  
Tae Uk Han ◽  
Atsushi Watanabe ◽  
...  
Keyword(s):  

Oil Shale ◽  
2018 ◽  
Vol 35 (3) ◽  
pp. 230 ◽  
Author(s):  
L WANG ◽  
D YANG ◽  
J ZHAO ◽  
Y ZHAO ◽  
Z KANG
Keyword(s):  

Oil Shale ◽  
2018 ◽  
Vol 35 (4) ◽  
pp. 304
Author(s):  
F HU ◽  
Z LIU ◽  
Q MENG ◽  
J WANG ◽  
Q SONG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document