scholarly journals A Statistical Bias Correction Tool for Generating Climate Change Scenarios in Indonesia based on CMIP5 Datasets

Author(s):  
A Faqih
2015 ◽  
Vol 19 (10) ◽  
pp. 4055-4066 ◽  
Author(s):  
A. Gobiet ◽  
M. Suklitsch ◽  
G. Heinrich

Abstract. This study discusses the effect of empirical-statistical bias correction methods like quantile mapping (QM) on the temperature change signals of climate simulations. We show that QM regionally alters the mean temperature climate change signal (CCS) derived from the ENSEMBLES multi-model data set by up to 15 %. Such modification is currently strongly discussed and is often regarded as deficiency of bias correction methods. However, an analytical analysis reveals that this modification corresponds to the effect of intensity-dependent model errors on the CCS. Such errors cause, if uncorrected, biases in the CCS. QM removes these intensity-dependent errors and can therefore potentially lead to an improved CCS. A similar analysis as for the multi-model mean CCS has been conducted for the variance of CCSs in the multi-model ensemble. It shows that this indicator for model uncertainty is artificially inflated by intensity-dependent model errors. Therefore, QM also has the potential to serve as an empirical constraint on model uncertainty in climate projections. However, any improvement of simulated CCSs by empirical-statistical bias correction methods can only be realized if the model error characteristics are sufficiently time-invariant.


2015 ◽  
Vol 12 (6) ◽  
pp. 5671-5701 ◽  
Author(s):  
A. Gobiet ◽  
M. Suklitsch ◽  
G. Heinrich

Abstract. This study discusses the effect of empirical-statistical bias correction methods like quantile mapping (QM) on the change signals of climate simulations. We show that QM regionally alters the mean temperature climate change signal (CCS) derived from the ENSEMBLES multi-model dataset by up to 15%. Such modification is currently strongly discussed and is often regarded as deficiency of bias correction methods. However, an analytical analysis reveals that this modification corresponds to the effect of intensity-dependent model errors on the CCS. Such errors cause, if uncorrected, biases in the CCS. QM removes these intensity-dependent errors and can therefore potentially lead to an improved CCS. A similar analysis as for the multi-model mean CCS has been conducted for the variance of CCSs in the multi-model ensemble. It shows that this indicator for model uncertainty is artificially inflated by intensity-dependent model errors. Therefore, QM has also the potential to serve as an empirical constraint on model uncertainty in climate projections. However, any improvement of simulated CCSs by empirical-statistical bias correction methods can only be realized, if the model error characteristics are sufficiently time-invariant.


2021 ◽  
Author(s):  
Fabian Lehner ◽  
Imran Nadeem ◽  
Herbert Formayer

Abstract. Daily meteorological data such as temperature or precipitation from climate models is needed for many climate impact studies, e.g. in hydrology or agriculture but direct model output can contain large systematic errors. Thus, statistical bias adjustment is applied to correct climate model outputs. Here we review existing statistical bias adjustment methods and their shortcomings, and present a method which we call EQA (Empirical Quantile Adjustment), a development of the methods EDCDFm and PresRAT. We then test it in comparison to two existing methods using real and artificially created daily temperature and precipitation data for Austria. We compare the performance of the three methods in terms of the following demands: (1): The model data should match the climatological means of the observational data in the historical period. (2): The long-term climatological trends of means (climate change signal), either defined as difference or as ratio, should not be altered during bias adjustment, and (3): Even models with too few wet days (precipitation above 0.1 mm) should be corrected accurately, so that the wet day frequency is conserved. EQA fulfills (1) almost exactly and (2) at least for temperature. For precipitation, an additional correction included in EQA assures that the climate change signal is conserved, and for (3), we apply another additional algorithm to add precipitation days.


Sign in / Sign up

Export Citation Format

Share Document