scholarly journals The effect of empirical-statistical correction of intensity-dependent model errors on the climate change signal

2015 ◽  
Vol 12 (6) ◽  
pp. 5671-5701 ◽  
Author(s):  
A. Gobiet ◽  
M. Suklitsch ◽  
G. Heinrich

Abstract. This study discusses the effect of empirical-statistical bias correction methods like quantile mapping (QM) on the change signals of climate simulations. We show that QM regionally alters the mean temperature climate change signal (CCS) derived from the ENSEMBLES multi-model dataset by up to 15%. Such modification is currently strongly discussed and is often regarded as deficiency of bias correction methods. However, an analytical analysis reveals that this modification corresponds to the effect of intensity-dependent model errors on the CCS. Such errors cause, if uncorrected, biases in the CCS. QM removes these intensity-dependent errors and can therefore potentially lead to an improved CCS. A similar analysis as for the multi-model mean CCS has been conducted for the variance of CCSs in the multi-model ensemble. It shows that this indicator for model uncertainty is artificially inflated by intensity-dependent model errors. Therefore, QM has also the potential to serve as an empirical constraint on model uncertainty in climate projections. However, any improvement of simulated CCSs by empirical-statistical bias correction methods can only be realized, if the model error characteristics are sufficiently time-invariant.

2015 ◽  
Vol 19 (10) ◽  
pp. 4055-4066 ◽  
Author(s):  
A. Gobiet ◽  
M. Suklitsch ◽  
G. Heinrich

Abstract. This study discusses the effect of empirical-statistical bias correction methods like quantile mapping (QM) on the temperature change signals of climate simulations. We show that QM regionally alters the mean temperature climate change signal (CCS) derived from the ENSEMBLES multi-model data set by up to 15 %. Such modification is currently strongly discussed and is often regarded as deficiency of bias correction methods. However, an analytical analysis reveals that this modification corresponds to the effect of intensity-dependent model errors on the CCS. Such errors cause, if uncorrected, biases in the CCS. QM removes these intensity-dependent errors and can therefore potentially lead to an improved CCS. A similar analysis as for the multi-model mean CCS has been conducted for the variance of CCSs in the multi-model ensemble. It shows that this indicator for model uncertainty is artificially inflated by intensity-dependent model errors. Therefore, QM also has the potential to serve as an empirical constraint on model uncertainty in climate projections. However, any improvement of simulated CCSs by empirical-statistical bias correction methods can only be realized if the model error characteristics are sufficiently time-invariant.


2011 ◽  
Vol 18 (6) ◽  
pp. 911-924 ◽  
Author(s):  
S. Vannitsem

Abstract. The statistical and dynamical properties of bias correction and linear post-processing are investigated when the system under interest is affected by model errors and is experiencing parameter modifications, mimicking the potential impact of climate change. The analysis is first performed for simple typical scalar systems, an Ornstein-Uhlenbeck process (O-U) and a limit point bifurcation. It reveals system's specific (linear or non-linear) dependences of biases and post-processing corrections as a function of parameter modifications. A more realistic system is then investigated, a low-order model of moist general circulation, incorporating several processes of high relevance in the climate dynamics (radiative effects, cloud feedbacks...), but still sufficiently simple to allow for an extensive exploration of its dynamics. In this context, bias or post-processing corrections also display complicate variations when the system experiences temperature climate changes up to a few degrees. This precludes a straightforward application of these corrections from one system's state to another (as usually adopted for climate projections), and increases further the uncertainty in evaluating the amplitudes of climate changes.


2015 ◽  
Vol 12 (3) ◽  
pp. 3011-3028 ◽  
Author(s):  
D. Maraun ◽  
M. Widmann

Abstract. To assess potential impacts of climate change for a specific location, one typically employs climate model simulations at the grid box corresponding to the same geographical location. But based on regional climate model simulations, we show that simulated climate might be systematically displaced compared to observations. In particular in the rain shadow of moutain ranges, a local grid box is therefore often not representative of observed climate: the simulated windward weather does not flow far enough across the mountains; local grid boxes experience the wrong airmasses and atmospheric circulation. In some cases, also the local climate change signal is deteriorated. Classical bias correction methods fail to correct these location errors. Often, however, a distant simulated time series is representative of the considered observed precipitation, such that a non-local bias correction is possible. These findings also clarify limitations of bias correcting global model errors, and of bias correction against station data.


2016 ◽  
Author(s):  
Yacouba Yira ◽  
Bernd Diekkrüger ◽  
Gero Steup ◽  
Aymar Y. Bossa

Abstract. This study evaluates climate change impacts on water resources using an ensemble of six Regional Climate Models (RCMs)-Global Climate Models (GCMs) in the Dano catchment (Burkina Faso). The applied climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project. After evaluation of the historical runs of the climate models ensemble, a statistical bias correction (Empirical Quantile Mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the ensemble of RCMs-GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to simulate water balance components. The mean hydrological and climate variables for two periods (1971–2000 and 2021–2050) were compared to assess the potential impact of climate change on water resources up to the middle of the twenty-first century under two greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicate: (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCMs-GCMs ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021–2050; (iii) individual climate models results lead to opposite discharge change signals; (iv) the RCMs-GCMs ensemble average suggests a +7 % increase in annual discharge under RCP4.5 and a −2 % decrease under RCP8.5; (v) the applied bias correction method only affected the magnitude of climate change signal. Therefore, potential increase and decrease of future discharge has to be considered in climate change adaptation strategies in the catchment. The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated with climate projections for the West African region. An ecohydrological analysis provides further insight into the behavior of the catchment.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 652
Author(s):  
Ivana Marinović ◽  
Ksenija Cindrić Kalin ◽  
Ivan Güttler ◽  
Zoran Pasarić

This study performs a systematic analysis of the recent and future changes of dry spells (DS) in Croatia. DS are defined as consecutive sequences of days with daily precipitation less than 5 mm of the precipitation-per-day threshold (DS5). Daily precipitation data come from a dense national rain gauge network (covering seven regions) and span the period 1961–2015. The spatial and temporal changes of the observed mean (MDS5) and maximum (MxDS5) seasonal and annual dry spells were analysed by means of the Kendall tau method and the partial trend method. Future changes of DS5 were assessed by employing the three regional climate models (RegCM4, CCLM4 and RCA4) covering the EURO-CORDEX domain with a 12.5-km horizontal resolution, resulting in a realistic orography and land–sea border over Croatia. The models were forced at their boundaries by the four CMIP5 global climate models. For the reference period 1971–2000, the observed, as well as modelled, DS5 were analysed, and the systematic model errors were assessed. Finally, the projections and future changes of the DS5 statistics based on simulations under the high and medium greenhouse gases concentration scenarios (i.e., RCP8.5 and RCP4.5) with a focus on the climate change signal between 1971–2000 and two future periods, 2011–2040 and 2041–2070, were examined. A prevailing increasing trend of MDS5 was found in the warm part of the year, being significant in the mountainous littoral and North Adriatic coastal region. An increasing trend of MxDS5 was also found in the warm part of the year (both the spring and summer), and it was particularly pronounced along the Adriatic coast, while a coherent negative trend pattern was found in the autumn. By applying the partial trend methodology, an increase was found in the very long DS5 (above the 90th percentile) in the recent half of the analysed 55-year period in all seasons, except in the autumn when shortening in the DS5 was detected. The climate change signal during the two analysed future periods was positive for the summer in all regions, weakly negative for the winter and not conclusive for the spring, autumn and year. It was found that no RCM-GCM combination is the best in all cases, since the most successful model combinations depend on the season and location.


Sign in / Sign up

Export Citation Format

Share Document