scholarly journals Drought and flood characteristics evolution in peninsular region of Shandong Province based on standardized precipitation index

Author(s):  
Weijun Zhao ◽  
Tingting Yan ◽  
Shuzhen Peng ◽  
Min Ding ◽  
Xiaodan Lai
2013 ◽  
Vol 295-298 ◽  
pp. 2116-2120
Author(s):  
Jian Fen Liu ◽  
Xing Nan Zhang ◽  
Hui Min Wang

Many drought and flood indices have been developed, the Standardized Precipitation Index (SPI) is one which has various temporal scales together to form an overall judgment of drought and flood and can be applied easily to different locations to identify and monitor drought and flood. Take Nanjing, China in the study as an example to analysis drought and flood variation by computing SPI values of four time scales including 3-months, 6-months, 12-months and 24-months, applying precipitation data from 1946-2000 of the study area. The results demonstrated SPI can be appropriate to analyze drought and flood variation of Nanjing, while the precipitation data were divided into three stages(1946-1963,1964-1981,1982-2000), the frequencies of various drought and flood classes from various time scales are different, particularly 12-months and 24-months. The time series is longer, the frequencies are more reliable and the differences more little.


2017 ◽  
Author(s):  
Chloé Meyer

Estimation of the annual economical exposition to drought based on Standardized Precipitation Index. It is based on three sources: 1) A global monthly gridded precipitation dataset obtained from the Climatic Research Unit (University of East Anglia). 2) A GIS modeling of global Standardized Precipitation Index based on Brad Lyon (IRI, Columbia University) methodology. 3) A Global Domestic Product grid for the year 2010, provided by the World Bank. Unit is expected average annual GDP (2007 as the year of reference) exposed in (US $, year 2000 equivalent). For more information, visit: http://preview.grid.unep.ch/ Cost Drought Exposure Risk


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Anurag Malik ◽  
Anil Kumar ◽  
Priya Rai ◽  
Alban Kuriqi

Accurate monitoring and forecasting of drought are crucial. They play a vital role in the optimal functioning of irrigation systems, risk management, drought readiness, and alleviation. In this work, Artificial Intelligence (AI) models, comprising Multi-layer Perceptron Neural Network (MLPNN) and Co-Active Neuro-Fuzzy Inference System (CANFIS), and regression, model including Multiple Linear Regression (MLR), were investigated for multi-scalar Standardized Precipitation Index (SPI) prediction in the Garhwal region of Uttarakhand State, India. The SPI was computed on six different scales, i.e., 1-, 3-, 6-, 9-, 12-, and 24-month, by deploying monthly rainfall information of available years. The significant lags as inputs for the MLPNN, CANFIS, and MLR models were obtained by utilizing Partial Autocorrelation Function (PACF) with a significant level equal to 5% for SPI-1, SPI-3, SPI-6, SPI-9, SPI-12, and SPI-24. The predicted multi-scalar SPI values utilizing the MLPNN, CANFIS, and MLR models were compared with calculated SPI of multi-time scales through different performance evaluation indicators and visual interpretation. The appraisals of results indicated that CANFIS performance was more reliable for drought prediction at Dehradun (3-, 6-, 9-, and 12-month scales), Chamoli and Tehri Garhwal (1-, 3-, 6-, 9-, and 12-month scales), Haridwar and Pauri Garhwal (1-, 3-, 6-, and 9-month scales), Rudraprayag (1-, 3-, and 6-month scales), and Uttarkashi (3-month scale) stations. The MLPNN model was best at Dehradun (1- and 24- month scales), Tehri Garhwal and Chamoli (24-month scale), Haridwar (12- and 24-month scales), Pauri Garhwal (12-month scale), Rudraprayag (9-, 12-, and 24-month), and Uttarkashi (1- and 6-month scales) stations, while the MLR model was found to be optimal at Pauri Garhwal (24-month scale) and Uttarkashi (9-, 12-, and 24-month scales) stations. Furthermore, the modeling approach can foster a straightforward and trustworthy expert intelligent mechanism for projecting multi-scalar SPI and decision making for remedial arrangements to tackle meteorological drought at the stations under study.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Sign in / Sign up

Export Citation Format

Share Document