scholarly journals Prediction of Multi-Scalar Standardized Precipitation Index by Using Artificial Intelligence and Regression Models

Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Anurag Malik ◽  
Anil Kumar ◽  
Priya Rai ◽  
Alban Kuriqi

Accurate monitoring and forecasting of drought are crucial. They play a vital role in the optimal functioning of irrigation systems, risk management, drought readiness, and alleviation. In this work, Artificial Intelligence (AI) models, comprising Multi-layer Perceptron Neural Network (MLPNN) and Co-Active Neuro-Fuzzy Inference System (CANFIS), and regression, model including Multiple Linear Regression (MLR), were investigated for multi-scalar Standardized Precipitation Index (SPI) prediction in the Garhwal region of Uttarakhand State, India. The SPI was computed on six different scales, i.e., 1-, 3-, 6-, 9-, 12-, and 24-month, by deploying monthly rainfall information of available years. The significant lags as inputs for the MLPNN, CANFIS, and MLR models were obtained by utilizing Partial Autocorrelation Function (PACF) with a significant level equal to 5% for SPI-1, SPI-3, SPI-6, SPI-9, SPI-12, and SPI-24. The predicted multi-scalar SPI values utilizing the MLPNN, CANFIS, and MLR models were compared with calculated SPI of multi-time scales through different performance evaluation indicators and visual interpretation. The appraisals of results indicated that CANFIS performance was more reliable for drought prediction at Dehradun (3-, 6-, 9-, and 12-month scales), Chamoli and Tehri Garhwal (1-, 3-, 6-, 9-, and 12-month scales), Haridwar and Pauri Garhwal (1-, 3-, 6-, and 9-month scales), Rudraprayag (1-, 3-, and 6-month scales), and Uttarkashi (3-month scale) stations. The MLPNN model was best at Dehradun (1- and 24- month scales), Tehri Garhwal and Chamoli (24-month scale), Haridwar (12- and 24-month scales), Pauri Garhwal (12-month scale), Rudraprayag (9-, 12-, and 24-month), and Uttarkashi (1- and 6-month scales) stations, while the MLR model was found to be optimal at Pauri Garhwal (24-month scale) and Uttarkashi (9-, 12-, and 24-month scales) stations. Furthermore, the modeling approach can foster a straightforward and trustworthy expert intelligent mechanism for projecting multi-scalar SPI and decision making for remedial arrangements to tackle meteorological drought at the stations under study.

Atmósfera ◽  
2016 ◽  
Vol 29 (2) ◽  
pp. 121 ◽  
Author(s):  
Bahram Choubin ◽  
Arash Malekian ◽  
Mohammad Gloshan

Climate modeling and prediction is important in water resources management, especially in arid and semi-arid regions that frequently suffer further from water shortages. The Maharlu-Bakhtegan basin, with an area of 31 000 km2 is a semi-arid and arid region located in southwestern Iran. Therefore, precipitation and water shortage in this area have many problems. This study presents a drought index modeling approach based on large-scale climate indices by using the adaptive neuro-fuzzy inference system (ANFIS), the M5P model tree and the multilayer perceptron (MLP). First, most of the climate signals were determined from 25 climate signals using factor analysis, and subsequently, the standardized precipitation index (SPI) was predicted one to 12 months in advance with ANFIS, the M5P model tree and MLP. The evaluation of the models performance by error parameters and Taylor diagrams demonstrated that performance of the MLP is better than the other models. The results also revealed that the accuracy of prediction increased considerably by using climate indices of the previous month (t – 1) (RMSE = 0.802, ME = –0.002 and PBIAS = –0.47).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meisam Babanezhad ◽  
Iman Behroyan ◽  
Ali Taghvaie Nakhjiri ◽  
Azam Marjani ◽  
Mashallah Rezakazemi ◽  
...  

AbstractHerein, a reactor of bubble column type with non-equilibrium thermal condition between air and water is mechanistically modeled and simulated by the CFD technique. Moreover, the combination of the adaptive network (AN) trainer with the fuzzy inference system (FIS) as the artificial intelligence method calling ANFIS has already shown potential in the optimization of CFD approach. Although the artificial intelligence method of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) has a good background for optimizing the other fields of research, there are not any investigations on the cooperation of this method with the CFD. The PSOFIS can reduce all the difficulties and simplify the investigation by elimination of the additional CFD simulations. In fact, after achieving the best intelligence, all the predictions can be done by the PSOFIS instead of the massive computational efforts needed for CFD modeling. The first aim of this study is to develop the PSOFIS for use in the CFD approach application. The second one is to make a comparison between the PSOFIS and ANFIS for the accurate prediction of the CFD results. In the present study, the CFD data are learned by the PSOFIS for prediction of the water velocity inside the bubble column. The values of input numbers, swarm sizes, and inertia weights are investigated for the best intelligence. Once the best intelligence is achieved, there is no need to mesh refinement in the CFD domain. The mesh density can be increased, and the newer predictions can be done in an easier way by the PSOFIS with much less computational efforts. For a strong verification, the results of the PSOFIS in the prediction of the liquid velocity are compared with those of the ANFIS. It was shown that for the same fuzzy set parameters, the PSOFIS predictions are closer to the CFD in comparison with the ANFIS. The regression number (R) of the PSOFIS (0.98) was a little more than that of the ANFIS (0.97). The PSOFIS showed a powerful potential in mesh density increment from 9477 to 774,468 and accurate predictions for the new nodes independent of the CFD modeling.


2007 ◽  
Vol 4 (3) ◽  
pp. 1369-1406 ◽  
Author(s):  
M. Firat

Abstract. The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. In this study, applicability of Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) methods, Generalized Regression Neural Networks (GRNN) and Feed Forward Neural Networks (FFNN), for forecasting of daily river flow is investigated and the Seyhan catchment, located in the south of Turkey, is chosen as a case study. Totally, 5114 daily river flow data are obtained from river flow gauges station of Üçtepe (1818) on Seyhan River between the years 1986 and 2000. The data set are divided into three subgroups, training, testing and verification. The training and testing data set include totally 5114 daily river flow data and the number of verification data points is 731. The river flow forecasting models having various input structures are trained and tested to investigate the applicability of ANFIS and ANN methods. The results of ANFIS, GRNN and FFNN models for both training and testing are evaluated and the best fit forecasting model structure and method is determined according to criteria of performance evaluation. The best fit model is also trained and tested by traditional statistical methods and the performances of all models are compared in order to get more effective evaluation. Moreover ANFIS, GRNN and FFNN models are also verified by verification data set including 731 daily river flow data at the time period 1998–2000 and the results of models are compared. The results demonstrate that ANFIS model is superior to the GRNN and FFNN forecasting models, and ANFIS can be successfully applied and provide high accuracy and reliability for daily River flow forecasting.


2016 ◽  
Vol 42 (1) ◽  
pp. 67 ◽  
Author(s):  
M. Peña-Gallardo ◽  
S. R. Gámiz-Fortís ◽  
Y. Castro-Diez ◽  
M. J. Esteban-Parra

The aim of this paper is the analysis of the detection and evolution of droughts occurred in Andalusia for the period 1901-2012, by applying three different drought indices: the Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index (SPEI) and the Standardized Drought-Precipitation Index (IESP), computed for three time windows from the initial period 1901-2012. This analysis has been carried out after a preliminary study of precipitation trends with the intention of understanding the precipitation behaviour, because this climatic variable is one of the most important in the study of extreme events. The specific objectives of this study are: (1) to investigate and characterize the meteorological drought events, mainly the most important episodes in Andalusia; (2) to provide a global evaluation of the capacities of the three different considered indices in order to characterize the drought in a heterogeneous climatically territory; and (3) to describe the temporal behaviour of precipitation and drought indices series in order to establish the general characteristics of their evolution in Andalusia. The results have shown that not all the indices respond similarly identifying the intensity and duration of dry periods in this kind of region where geographical and climatic variability is one of the main elements to be considered.


2012 ◽  
Vol 1 (2) ◽  
pp. 44-59 ◽  
Author(s):  
M. S. Abdel Aziz ◽  
M. A. Moustafa Hassan ◽  
E. A. El-Zahab

This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.


Sign in / Sign up

Export Citation Format

Share Document