scholarly journals An Investigation of circulation regime variability and dangerous weather phenomena in Russia in the 21stcentury

Author(s):  
N K Kononova ◽  
A R Lupo
Keyword(s):  
2017 ◽  
Vol 474 (2) ◽  
pp. 649-652 ◽  
Author(s):  
V. M. Belolipetskii ◽  
A. G. Degermendzhi ◽  
S. N. Genova ◽  
D. Y. Rogozin

2015 ◽  
Vol 45 (11-12) ◽  
pp. 3623-3633 ◽  
Author(s):  
C.-F. Schleussner ◽  
D. V. Divine ◽  
J. F. Donges ◽  
A. Miettinen ◽  
R. V. Donner

Nature ◽  
2007 ◽  
Vol 447 (7147) ◽  
pp. 986-990 ◽  
Author(s):  
Martin Jakobsson ◽  
Jan Backman ◽  
Bert Rudels ◽  
Jonas Nycander ◽  
Martin Frank ◽  
...  

2021 ◽  
Author(s):  
Michael Gallagher ◽  
Matthew Shupe ◽  
Hélène Chepfer ◽  
Tristan L'Ecuyer

Abstract. Snowfall is the major source of mass for the Greenland ice sheet but the spatial and temporal variability of its contributions to mass balance have so far been inadequately quantified. By characterizing local atmospheric circulation and utilizing CloudSat spaceborne radar observations of snowfall, we provide a detailed spatial analysis of snowfall variability and its relationship to Greenland mass balance, presenting first-of-their-kind daily maps of the spatial variability in snowfall from observations across Greenland. For identified regional atmospheric circulation patterns, we show that the spatial distribution and net mass input of snowfall varies significantly with the position and strength of surface cyclones. Cyclones west of Greenland driving southerly flow contribute significantly more snowfall than any other circulation regime, with each daily occurrence of the most extreme southerly circulation pattern is contributes an average of 1.66 Gt of snow to the Greenland ice sheet. While cyclones east of Greenland, patterns with the least snowfall, contribute as little as 0.58 Gt each day. Above 2 km on the ice sheet where snowfall is inconsistent, extreme southerly patterns are the most significant mass contributors, with up to 1.20 Gt of snowfall above this elevation. This analysis demonstrates that snowfall over the interior of Greenland varies by up to a factor of five depending on regional circulation conditions. Using independent observations of mass changes made by the Gravity Recovery and Climate Experiment (GRACE), we verify that the largest mass increases are tied to the southerly regime with cyclones west of Greenland. For occurrences of the strongest southerly pattern, GRACE indicates a net mass increase of 1.29 Gt in the ice sheet accumulation zone (above 2 km elevation) compared to the 1.20 Gt of snowfall observed by CloudSat. This good overall agreement suggests that the analytical approach presented here can be used to directly quantify snowfall mass contributions and their most significant drivers spatially across the GrIS. While previous research has implicated this same southerly regime in ablation processes during summer, this paper shows that ablation mass loss in this circulation regime is nearly an order of magnitude larger than the mass gain from associated snowfall. For daily occurrences of the southerly circulation regime, a mass loss of approximately 11 Gt is observed across the ice sheet despite snowfall mass input exceeding one gigatonne. By analyzing the spatial variability of snowfall and mass changes, this research provides new insight into connections between regional atmospheric circulation and GrIS mass balance.


2017 ◽  
Author(s):  
Héloise Lavigne ◽  
Giuseppe Civitarese ◽  
Miroslav Gacic ◽  
Fabrizio D'Ortenzio

Abstract. In the North Ionian, water circulation is characterized by a decadal alternation of cyclonic and anticyclonic regime driven by the mechanism called BiOS (Bimodal Oscillating System). The circulation regime affects the vertical dynamics and the nutrient distribution. The North Ionian is then a good study area to investigate how changes in circulation can affect phytoplankton dynamics in oligotrophic regions. From in situ observations, for each circulation regime the averaged distribution of isopycnals is provided, and a depth difference of about 80 m is estimated for the nitracline between cyclonic and anticyclonic regime. Based on phytoplankton phenology metrics extracted from annual time-series of satellite ocean color data for the period 1998–2012, the cyclonic and anticyclonic regimes are compared. Results show that the average chlorophyll in March, the date of bloom initiation and the date of maximum chlorophyll were affected by circulation patterns in the North Ionian. In the center of the gyre, bloom initiation occurred in December and chlorophyll was low in March when circulation was anticyclonic, whereas during the cyclonic circulation regime, a late chlorophyll peak, likely resulting from different phytoplankton dynamics, was commonly observed in March. An additional analysis shows that the winter buoyancy losses, which govern the Mixed Layer Depth (MLD) also contribute to explain the interannual variability in bloom initiation and intensity. Two scenarios involving the relative position of the MLD and nitracline are finally developed, discussed and tested with model data to explain the different phenology patterns observed in the North Ionian.


Sign in / Sign up

Export Citation Format

Share Document