scholarly journals Impact of decadal reversals of the North Ionian circulation on phytoplankton phenology

Author(s):  
Héloise Lavigne ◽  
Giuseppe Civitarese ◽  
Miroslav Gacic ◽  
Fabrizio D'Ortenzio

Abstract. In the North Ionian, water circulation is characterized by a decadal alternation of cyclonic and anticyclonic regime driven by the mechanism called BiOS (Bimodal Oscillating System). The circulation regime affects the vertical dynamics and the nutrient distribution. The North Ionian is then a good study area to investigate how changes in circulation can affect phytoplankton dynamics in oligotrophic regions. From in situ observations, for each circulation regime the averaged distribution of isopycnals is provided, and a depth difference of about 80 m is estimated for the nitracline between cyclonic and anticyclonic regime. Based on phytoplankton phenology metrics extracted from annual time-series of satellite ocean color data for the period 1998–2012, the cyclonic and anticyclonic regimes are compared. Results show that the average chlorophyll in March, the date of bloom initiation and the date of maximum chlorophyll were affected by circulation patterns in the North Ionian. In the center of the gyre, bloom initiation occurred in December and chlorophyll was low in March when circulation was anticyclonic, whereas during the cyclonic circulation regime, a late chlorophyll peak, likely resulting from different phytoplankton dynamics, was commonly observed in March. An additional analysis shows that the winter buoyancy losses, which govern the Mixed Layer Depth (MLD) also contribute to explain the interannual variability in bloom initiation and intensity. Two scenarios involving the relative position of the MLD and nitracline are finally developed, discussed and tested with model data to explain the different phenology patterns observed in the North Ionian.

2018 ◽  
Vol 15 (14) ◽  
pp. 4431-4445 ◽  
Author(s):  
Héloise Lavigne ◽  
Giuseppe Civitarese ◽  
Miroslav Gačić ◽  
Fabrizio D'Ortenzio

Abstract. In the north Ionian, water circulation is characterized by a decadal alternation of cyclonic and anticyclonic regime driven by the mechanism called BiOS (bimodal oscillating system). The circulation regimes affect both vertical dynamics and the nutrient distribution. The north Ionian is then a good study area to investigate how changes in circulation can affect phytoplankton dynamics in oligotrophic regions. From in situ observations, for each circulation regime the averaged distribution of isopycnals is provided, and a depth difference of about 80 m is estimated for the nitracline between the cyclonic and anticyclonic regime. Based on phytoplankton phenology metrics extracted from annual time series of satellite ocean color data for the period 1998–2012, the cyclonic and anticyclonic regimes are compared. Results show that the average chlorophyll in March, the date of bloom onset and the date of maximum chlorophyll were affected by circulation patterns in the north Ionian. In the center of the north Ionian gyre, the bloom started in December and chlorophyll was low in March when circulation was anticyclonic, whereas during the cyclonic circulation regime, a late chlorophyll peak, likely resulting from different phytoplankton dynamics, was commonly observed in March. An additional analysis shows that the winter buoyancy losses, which govern the mixed layer depth (MLD), also contribute to explaining the interannual variability in bloom onset and intensity. Two trophic regimes were then identified in the north Ionian gyre (NIG) and they could be explained with the relative position of the MLD and nitracline. The first one is characterized by an early winter bloom onset and the absence of a chlorophyll peak in March. It was observed when circulation was anticyclonic or when winter MLD was relatively shallow. Dominant regenerated production all year and an absence of significant nutrient supplies to surface waters are proposed to explain this trophic regime. Conversely, the second trophic regime is marked by a bloom onset in late winter (i.e., February) and a chlorophyll peak in March. The chlorophyll increase was interpreted as a direct response to the nutrient enrichment of surface waters. This winter–spring bloom was observed when circulation was cyclonic and when winter mixing was relatively strong.


2009 ◽  
Vol 6 (8) ◽  
pp. 1405-1421 ◽  
Author(s):  
M. Telszewski ◽  
A. Chazottes ◽  
U. Schuster ◽  
A. J. Watson ◽  
C. Moulin ◽  
...  

Abstract. Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a 1° latitude by 1° longitude grid for years 2004 through 2006 inclusive. The maps have been computed using a neural network technique which reconstructs the non-linear relationships between three biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using 389 000 triplets of the SeaWiFS-MODIS chlorophyll-a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, spanning the range of 208 to 437 μatm. The root mean square error (RMSE) of the neural network fit to the data is 11.6 μatm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as estimates of the interannual variability in the major biogeochemical provinces are presented and discussed. High resolution combined with basin-wide coverage makes the maps a useful tool for several applications such as the monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.


2020 ◽  
Author(s):  
Cecilia Peralta-Ferriz ◽  
James Morison ◽  
Jennifer Bonin

<p>Ocean bottom pressure (OBP) from the Gravity Recovery and Climate Experiment (GRACE) revealed Arctic Ocean circulation patterns and variability that were previously unknown (Morison et al., 2007; Morison et al., 2012; Peralta-Ferriz et al., 2014). OBP measurements from the GRACE Follow-On mission (GRACE-FO) are therefore increasingly important for monitoring Arctic Ocean variability, and critical for understanding and predicting the fate of the rapidly changing Arctic environment.</p> <p>In this work we use GRACE data from 2002 to 2017 jointly with a 10-year record of <em>in situ</em> OBP at the North Pole (2005-2015) complemented with <em>in situ</em> OBP in the Canada Basin (2015-2018), and wind reanalysis products, to create a proxy representation of the OBP anomalies that explains the largest possible fraction of the observed OBP variability in the Arctic Ocean and the Nordic Seas. We do this by performing a linear regression analysis, combined with maximum covariance analysis (MCA) – a technique that was tested prior to the decommission of GRACE and the launch of GRACE-FO (Peralta-Ferriz et al., 2016). Here, the first predictor time series is the <em>in situ</em> OBP record at the North Pole and Canada Basin; the second predictor time series is the expansion coefficients time series of the leading mode of MCA between the GRACE OBP coupled with the winds. We use this proxy OBP to merge GRACE with the first 2 years of available GRACE-FO OBP. We compare our merged OBP field with OBP output from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). Preliminary results suggest a good agreement between the proxy and predicted OBP fields and both GRACE and GRACE-FO data, especially in the central Arctic, but also in the Nordic Seas. The OBP variations from the merged GRACE and GRACE-FO and from PIOMAS will be also explored.</p> <p><strong>References:</strong></p> <ul> <li>Morison, J. H., J. Wahr, R. Kwok and C. Peralta-Ferriz (2007), Recent trends in Arctic Ocean mass distribution revealed by GRACE, Res. Lett.,34, L07602, doi:10.1029/2006GL029016.</li> <li>Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen and M. Steele (2012), Changing Arctic Ocean freshwater pathways. Nature, 481, 66-7</li> <li>Peralta-Ferriz, C., J. H. Morison, J. M. Wallace, J. Bonin and J. Zhang (2014), Arctic Ocean circulation patterns revealed by GRACE, of Climate, 27:1445–1468 doi:10.1175/JCLI-D-13-00013.1.</li> <li>Peralta-Ferriz, C., J. H. Morison and J. M. Wallace(2016), Proxy representation of Arctic ocean bottom pressure variability: Bridging gaps in GRACE observations,  Res. Lett., 43, 9183–9191, doi:10.1002/2016GL070137</li> </ul>


2007 ◽  
Vol 25 (11) ◽  
pp. 2247-2257 ◽  
Author(s):  
C. Jamet ◽  
C. Moulin ◽  
N. Lefèvre

Abstract. Automated instruments on board Volunteer Observing Ships (VOS) have provided high-frequency pCO2 measurements over basin-wide regions for a decade or so. In order to estimate regional air-sea CO2 fluxes, it is necessary to interpolate between in-situ measurements to obtain maps of the marine pCO2. Such an interpolation remains, however, a difficult task because VOS lines are too distant from each other to capture the high pCO2 variability. Relevant physical parameters available at large scale are thus necessary to serve as a guide to estimate the pCO2 values between the VOS lines. Satellites do not measure pCO2 but they give access to parameters related to the processes that control its variability, such as sea surface temperature (SST). In this paper we developed a method to compute pCO2 maps using satellite data (SST and CHL, the chlorophyll concentration), combined with a climatology of the mixed-layer depth (MLD). Using 15 401 measurements of surface pCO2 acquired in the North Atlantic between UK and Jamaica, between June 1994 and August 1995, we show that the parameterization of pCO2 as a function of SST, CHL and MLD yields more realistic pCO2 values than parameterizations that have been widely used in the past, based on SST, latitude, longitude or SST only. This parameterization was then used to generate seasonal maps of pCO2 over the North Atlantic. Results show that our approach yields the best marine pCO2 estimates, both in terms of absolute accuracy, when compared with an independent data set, and of geographical patterns, when compared to the climatology of Takahashi et al. (2002). This suggests that monitoring the seasonal variability of pCO2 over basin-wide regions is possible, provided that sufficient VOS lines are available.


2009 ◽  
Vol 6 (2) ◽  
pp. 3373-3414 ◽  
Author(s):  
M. Telszewski ◽  
A. Chazottes ◽  
U. Schuster ◽  
A. J. Watson ◽  
C. Moulin ◽  
...  

Abstract. Here we present monthly, basin-wide maps of the partial pressure of carbon dioxide (pCO2) for the North Atlantic on a 1° latitude by 1° longitude grid for years 2004 through 2006 inclusive, constructed using a neural network technique which reconstructs the non-linear relationships between 3 biogeochemical parameters and marine pCO2. A self organizing map (SOM) neural network has been trained using the SeaWiFS-MODIS chlorophyll a concentration, the NCEP/NCAR reanalysis sea surface temperature, and the FOAM mixed layer depth. 389 000 such triplets were used. The trained SOM was labelled with 137 000 underway pCO2 measurements collected in situ during 2004, 2005 and 2006 in the North Atlantic, which span the range of 208 and 437 μatm. The root mean square (RMS) deviation of the neural network fits from the data is 11.55 μatm, which equals to just above 3 per cent of an average pCO2 value in the in situ dataset. The seasonal pCO2 cycle as well as the interannual variability estimates in the major biogeochemical provinces is presented and spatial and temporal variability of the estimated fields is discussed. High resolution combined with basin-wide cover makes the maps a useful tool for several applications such as monitoring of basin-wide air-sea CO2 fluxes or improvement of seasonal and interannual marine CO2 cycles in future model predictions. The method itself is a valuable alternative to traditional statistical modelling techniques used in geosciences.


1998 ◽  
Vol 37 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Elisa Garvey ◽  
John E. Tobiason ◽  
Michael Hayes ◽  
Evelyn Wolfram ◽  
David A. Reckhow ◽  
...  

This paper reports on field studies and model development aimed at understanding coliform fate and transport in the Quabbin Reservoir, an oligotrophic drinking water supply reservoir. An investigation of reservoir currents suggested the importance of wind driven phenomena, and that both lateral and vertical circulation patterns exist. In-situ experiments of coliform decay suggested dependence on light intensity and yielded an appropriate decay coefficient to be used in CE-QUAL-W2, a two-dimensional hydrodynamic and water quality model. Modeling confirmed the sensitivity of reservoir outlet concentration to vertical variability within the reservoir, meteorological conditions, and location of coliform source.


2020 ◽  
pp. 1-14
Author(s):  
Richard D. Ray ◽  
Kristine M. Larson ◽  
Bruce J. Haines

Abstract New determinations of ocean tides are extracted from high-rate Global Positioning System (GPS) solutions at nine stations sitting on the Ross Ice Shelf. Five are multi-year time series. Three older time series are only 2–3 weeks long. These are not ideal, but they are still useful because they provide the only in situ tide observations in that sector of the ice shelf. The long tide-gauge observations from Scott Base and Cape Roberts are also reanalysed. They allow determination of some previously neglected tidal phenomena in this region, such as third-degree tides, and they provide context for analysis of the shorter datasets. The semidiurnal tides are small at all sites, yet M2 undergoes a clear seasonal cycle, which was first noted by Sir George Darwin while studying measurements from the Discovery expedition. Darwin saw a much larger modulation than we observe, and we consider possible explanations - instrumental or climatic - for this difference.


2021 ◽  
Vol 13 (14) ◽  
pp. 2805
Author(s):  
Hongwei Sun ◽  
Junyu He ◽  
Yihui Chen ◽  
Boyu Zhao

Sea surface partial pressure of CO2 (pCO2) is a critical parameter in the quantification of air–sea CO2 flux, which plays an important role in calculating the global carbon budget and ocean acidification. In this study, we used chlorophyll-a concentration (Chla), sea surface temperature (SST), dissolved and particulate detrital matter absorption coefficient (Adg), the diffuse attenuation coefficient of downwelling irradiance at 490 nm (Kd) and mixed layer depth (MLD) as input data for retrieving the sea surface pCO2 in the North Atlantic based on a remote sensing empirical approach with the Categorical Boosting (CatBoost) algorithm. The results showed that the root mean square error (RMSE) is 8.25 μatm, the mean bias error (MAE) is 4.92 μatm and the coefficient of determination (R2) can reach 0.946 in the validation set. Subsequently, the proposed algorithm was applied to the sea surface pCO2 in the North Atlantic Ocean during 2003–2020. It can be found that the North Atlantic sea surface pCO2 has a clear trend with latitude variations and have strong seasonal changes. Furthermore, through variance analysis and EOF (empirical orthogonal function) analysis, the sea surface pCO2 in this area is mainly affected by sea temperature and salinity, while it can also be influenced by biological activities in some sub-regions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Edwards ◽  
Pierre Hélaouët ◽  
Eric Goberville ◽  
Alistair Lindley ◽  
Geraint A. Tarling ◽  
...  

AbstractIn the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic.


2012 ◽  
Vol 53 (60) ◽  
pp. 257-266 ◽  
Author(s):  
E. Rignot ◽  
I. Fenty ◽  
D. Menemenlis ◽  
Y. Xu

AbstractWe examine the pattern of spreading of warm subtropical-origin waters around Greenland for the years 1992–2009 using a high-resolution (4km horizontal grid) coupled ocean and sea-ice simulation. The simulation, provided by the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, qualitatively reproduces the observed warming of subsurface waters in the subpolar gyre associated with changes of the North Atlantic atmospheric state that occurred in the mid-1990s. The modeled subsurface ocean temperature warmed by 1.5˚C in southeast and southwest Greenland during 1994–2005 and subsequently cooled by 0.5˚C; modeled subsurface ocean temperature increased by 2–2.5˚C in central and then northwest Greenland during 1997–2005 and stabilized thereafter, while it increased after 2005 by <0.5˚C in north Greenland. Comparisons with in situ measurements off the continental shelf in the Labrador and Irminger Seas indicate that the model initial conditions were 0.4˚C too warm in the south but the simulated warming is correctly reproduced; while measurements from eastern Baffin Bay reveal that the model initial conditions were 1.0˚C too cold in the northwest but the simulated ocean warming brought modeled temperature closer to observations, i.e. the simulated warming is 1.0˚C too large. At several key locations, the modeled oceanic changes off the shelf and below the seasonal mixed layer were rapidly transmitted to the shelf within troughs towards (model-unresolved) fjords. Unless blocked in the fjords by shallow sills, these warm subsurface waters had potential to propagate down the fjords and melt the glacier fronts. Based on model sensitivity simulations from an independent study (Xu and others, 2012), we show that the oceanic changes have very likely increased the subaqueous melt rates of the glacier fronts, and in turn impacted the rates of glacier flow.


Sign in / Sign up

Export Citation Format

Share Document