scholarly journals Research on Mining Technology of Steeply Inclined Thin Ore Body in High-grade Content Mine

Author(s):  
You Lin
2021 ◽  
Vol 59 (5) ◽  
pp. 913-945
Author(s):  
Steve R. Beyer ◽  
Kurt Kyser ◽  
Tom G. Kotzer ◽  
Kevin Ansdell ◽  
David Quirt

ABSTRACT An orientation survey using surficial media was performed over the high-grade McArthur River unconformity-related U deposit (Saskatchewan, Canada) to test whether or not secondary dispersion of elements related to the ore body or alteration zone can be detected at the surface more than 500 m above the deposit. Organic-rich Ah-horizon soils, Fe-rich B-horizon soils, C-horizon soils, tree cores of Jack pine (Pinus banksiana), and glacially dispersed boulders of Manitou Falls Formation sandstone that host the U deposit were collected in four sampling grids near the mine site. Two of the grids overlaid the trace of the P2 fault that hosts the deposit and extends nearly to the surface, one grid overlaid both the P2 fault and one of the high-grade ore bodies (Zone 4), and one grid was located 2.5 km away from the ore body surface trace in the barren hanging wall of the P2 fault. The grid overlying the Zone 4 ore body had the highest proportion of samples with elevated U and low 207Pb/206Pb ratios, the latter indicative of radiogenic Pb from a high-U source, measured in two size fractions of Ah-horizon soils using Na pyrophosphate leach, pine tree cores using total digestion, and sandstone boulders using 2% HNO3 leach. A handful of pathfinder elements, such as As, Co, Ni, and Pb, are variably associated with the U and radiogenic Pb. Sandstone boulders with an assemblage of dravite + kaolinite ± illite, determined using shortwave infrared (SWIR) spectroscopy and matching the alteration mineralogy in the Manitou Falls Formation above the U deposit, were prevalent in the grid above the Zone 4 ore body and in the adjacent grid in the direction of glacial dispersion. A coarse fraction of the B-horizon soils, leached with 5% HNO3, highlighted the grid above the Zone 4 ore body to a lesser extent, whereas HNO3 leaches and aqua regia digests of C-horizon soil separates did not highlight the P2 fault or ore body trace due to influence by parent till mineralogy. Results of environmental monitoring at the mine site, which was active at the time of sampling, suggest that dust containing U, Pb, and radionuclides from waste rock piles and a ventilation shaft could influence A-horizon soil geochemistry near the mine site, and that U and radiogenic Pb anomalies in B- and C-horizon soils near the water table are close to a treated mine effluent discharge point. However, older trees that record elevated U and radiogenic Pb in annual rings that pre-date mining activity, and alteration mineralogy and geochemistry of boulders that are less susceptible to the influences of mining activity, add confidence that the geochemical anomaly in diverse surficial media above the Zone 4 ore body represents secondary dispersion from the underlying U deposit.


2019 ◽  
Vol 28 (4) ◽  
pp. 706-716
Author(s):  
Mykhailo V. Petlovanyi ◽  
Vladislav V. Ruskykh

This paper is dedicated to research into the geological peculiarities, shape of the ore body and the occurrence of the host rocks in the hanging wall of the Pivdenno-Biloz- erske deposit , as well as their influence on the degrees and quality of high-grade iron ore extraction. It is noted that in the interval of 480 – 840 m depths, a decrease is observed in the stability of the natural and technogenic massif, which is caused by the increase in rock pressure with depth, the influence of blast- ing operations on the massif and the difference in geological conditions. This has led to the collapse of hanging wall rocks and backfill into the mined-out space of chambers in certain areas of the deposit, the dilution of the ore and deterioration of the operational state of the underground mine workings. Attention is focused on the causes and peculiarities of consequences of the collapse of the hanging wall rocks during ore mining, which reduce the technical and-economic indexes of the ore extraction from the chambers. A 3D-model of an ore deposit with complex structural framework has been developed, which makes it possible to visually observe in axonometric projection the geological peculiarities and the shape of the ore body. The parameters have been studied of mining chambers in the 640 – 740 m floor under different changing geological conditions of the ore deposit and hanging wall rocks occurrence – the northern, central and southern parts. The difference in the iron content in the mined ore relative to the initial iron content in the massif has been defined as an indicative criterion of the influence of changing conditions on the production quality. The reasons have been revealed which contribute to the collapse of the rocks and the subsequent decrease in the iron content of the mined ore in ore deposit areas dif- fering by their characteristics. It has been determined that within the central and half of the southern ore deposit parts with a length of 600 m, an anomalous geological zone is formed, the manifestation of which will be increased with the depth of mining. It was noted that within this zone, with the highest intensity and density of collapse of hanging wall rocks, the influence of decrease in the slope angle and change in the strike direction are of greatest priority, and such geological factors as a decrease in hardness, rock morphology, deposit thickness increase this influence significantly. To solve the problems of the hanging wall rocks’ stability, it is recommended to study the nature and direction of action of gravity forces on the stope chambers in the northern, central and southern parts, as well to search for scientific solutions in regard to changes in the geometric shapes of stope chambers and their spatial location, improving the order of reserves mining in terms of the ore deposit area, the rational order of breaking-out ore reserves in the chambers with changing mining and geological conditions of the fields’ development.


2020 ◽  
Vol 10 (23) ◽  
pp. 8369
Author(s):  
Kun Song ◽  
Ende Wang ◽  
Yuzeng Yao ◽  
Jianfei Fu ◽  
Dahai Hao ◽  
...  

Research on wall rock alteration is of great importance to the understanding and exploration of ore deposits. The microscopic changes of the same mineral in different alteration zones can provide information about the migration and enrichment of ore-forming elements. In this paper, a typical profile of a high-grade iron ore body in Gongchangling iron deposit was investigated and sampled. The samples were checked by polarized microscopy, and alterations zonation were delineated according to the hydrothermal mineral assemblages and paragenesis. Moreover, hyperspectral images of wall rocks from each alteration zone were obtained by Norsk Elektro Optikk (NEO) HySpex-320 m imaging system. A customer Interactive Data Language (IDL) software package was used to process the images, and spectral features were extracted from the selected samples. The results indicate that spectral characteristics manifest obviously regular variations; i.e., from proximal to distal for the high-grade iron ore body, the wavelengths at ca. 1200 nm of chlorite and garnet, which accounts for most of the hydrothermal alteration minerals, become longer, and the absorption depths gradually smaller. The spectral features at 1200 nm of chlorite and garnet are always caused by the crystal field effect of Fe2+; therefore, the wavelength variations indicate the increase of Fe2+ and a reduced environment, which can provide more detailed information about the metallogeny and water–rock interaction. Since the hyperspectral features of the altered rocks can disclose unique mineralogical and structural information, the conventional classification of alteration zonation should be combined with the spectral feature, i.e., spectral alteration zonation, which is of great help to the understanding of the forming conditions of wall rock alteration and also the high-grade iron ore bodies.


2016 ◽  
Vol 47 (4) ◽  
pp. 1635 ◽  
Author(s):  
S.P. Kilias ◽  
J. Naden ◽  
M. Paktsevanoglou ◽  
M. Giampouras ◽  
A. Stavropoulou ◽  
...  

The mineralogy of ore and hydrothermal alteration of the high-sulfidation enargite–Au–Ag–Te Viper (Thrace) orebody, and fluid inclusions, were studied in drillcore samples. The hydrothermal system has evolved through several stages from pre-ore advanced argillic I+vuggy silica alteration, ore-stage advanced argillic II+vuggy silica alteration and silicification that has developed to argillic alteration (sericite)+silicification through pH increase, and a return to acid conditions as crosscutting post-ore advanced argillic alteration III+silicification. Ore is characterized by early barren pyrite I corroded by: (i) enargite–Au± complex Pb–Bi–Cu sulfosalts, tellurides and selenides, coexisting with euhedral quartz, and (ii) zoned pyrite II distinguished by anomalous concentrations of Au, Cu, As, Te, Bi, Pb, Se, within vuggy quartz. High-grade gold ore is also intergrown with late brecciacementing and vein-type epithermal-like banded quartz+ pyrite. These alteration and mineralization observations are consistent with the changing composition, water fugacity, and density of an expanding column of metal-laden magmatic vapor, combined with changes in structural permeability. Part of the enargite─Au─ quartz assemblages have been probably quenched from sulfosalt melt at high─temperatures (>575°C). End product of the enargite–sulfhide–silica crystallization sequence is the formation of high-grade epithermal quartz-gold colloformbanded ore during cooling and/or dilution/mixing down to ~200°C.


2014 ◽  
Vol 998-999 ◽  
pp. 426-429 ◽  
Author(s):  
Chuan Wei Zang ◽  
Miao Chen ◽  
Er Yu Wang

With the resources exhaustion of medium-thick and thick coal seam, the mining technology of thin coal seam has attracted more attention. Due to the little working space for mining in thin coal seam, blasting mining and high-grade conventional mining are main mining methods that were used in thin coal seam. Taking the 17th coal seam of Liyan mine as an example, in this paper we analyze the roof structure of the lower thin coal seam under the goaf of the upper coal seam. The fully mechanized mining equipment is selected on the basis of the new roof structure and applied in field. Finally, safe and efficient mining is achieved by improving the adaptability of the equipment.


Sign in / Sign up

Export Citation Format

Share Document