scholarly journals The Effect of Seaweed Extract on The Growth of Shoot of Shallot (Allium wakegi Araki) Lembah Palu Variety on in vitro

2021 ◽  
Vol 750 (1) ◽  
pp. 012024
Author(s):  
R Yusuf ◽  
U Made ◽  
A Syakur ◽  
R N aestary ◽  
Y Kalaba ◽  
...  
2017 ◽  
Vol 11 (4) ◽  
pp. 134-141
Author(s):  
Packiaraj Gurusarava ◽  
Sadasivam Vinoth ◽  
Ganesan Prem Kumar ◽  
Pandiselvi .

2006 ◽  
Vol 11 (2) ◽  
pp. 160-163 ◽  
Author(s):  
Youngwan Seo ◽  
Sung-Ho Kang ◽  
Hee-Jung Lee ◽  
You Ah Kim ◽  
Hyun Joo Youn ◽  
...  

2015 ◽  
Vol 96 (6) ◽  
pp. 2125-2135 ◽  
Author(s):  
Rósa Jónsdóttir ◽  
Margrét Geirsdóttir ◽  
Patricia Y Hamaguchi ◽  
Polona Jamnik ◽  
Hordur G Kristinsson ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
pp. 86-90
Author(s):  
Ramal Yusuf ◽  
Zainuddin Basri ◽  
Abdul Syakur ◽  
Yulianti Kalaba ◽  
Hawalina Kasim ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Youyoung Choi ◽  
Shin Ja Lee ◽  
Hyun Sang Kim ◽  
Jun Sik Eom ◽  
Seong Uk Jo ◽  
...  

AbstractSeveral seaweed extracts have been reported to have potential antimethanogenic effects in ruminants. In this study, the effect of three brown seaweed species (Undaria pinnatifida, UPIN; Sargassum fusiforme, SFUS; and Sargassum fulvellum, SFUL) on rumen fermentation characteristics, total gas, methane (CH4), carbon dioxide (CO2) production, and microbial populations were investigated using an in vitro batch culture system. Seaweed extract and its metabolites, total flavonoid and polyphenol contents were identified and compared. For the in vitro batch, 0.25 mg∙mL−1 of each seaweed extract were used in 6, 12, 24, 36 and 48 h of incubation. Seaweed extract supplementation decreased CH4 yield and its proportion to total gas production after 12, 24, and 48 h of incubation, while total gas production were not significantly different. Total volatile fatty acid and molar proportion of propionate increased with SFUS and SFUL supplementation after 24 h of incubation, whereas UPIN was not affected. Additionally, SFUS increased the absolute abundance of total bacteria, ciliate protozoa, fungi, methanogenic archaea, and Fibrobacter succinogenes. The relative proportions of Butyrivibrio fibrisolvens, Butyrivibrio proteoclasticus, and Prevotella ruminicola were lower with seaweed extract supplementation, whereas Anaerovibrio lipolytica increased. Thus, seaweed extracts can decrease CH4 production, and alter the abundance of rumen microbial populations.


2020 ◽  
Vol 9 (11) ◽  
pp. e4079119913
Author(s):  
Thiago Anchieta de Melo ◽  
Ilka Márcia Ribeiro de Souza Serra ◽  
Ingrid Tayane Vieira da Silva do Nascimento

This work aimed to verify the effect in vitro, of Ascophyllum nodosum (AN) seaweed extract on the morphology and cellulolytic capacity of the fungus Fusarium oxysporum f. sp. vasinfectum (FOV). Thus, the fungus was placed in contact with different doses of the extract, being these: 0, 0.5, 1.0, 2.0, 4.0 and 8.0%. It was verified that the product, with increasing doses, progressively induced mycelial growth of the fungus, as measured by the diameter of the colonies and fresh mass of mycelium grown in PD (potato-dextrose) culture medium. This result was also corroborated by the progressive increase in the activity of the β-1,3-glucanase and chitinase enzymes required during the hypha elongation process. However, the AN extract progressively reduced FOV sporulation with increasing doses. Furthermore, the cellulolytic capacity of the phytopathogen was significantly reduced in the presence of the algae extract, which was measured by the activity of the enzymes endo-β-1,4-glucanase, exo-β-1,4-glucanase and β-glucosidase. Thus, these facts constitute important information for the management of fusariosis, since the inhibition of sporulation and decreasing degradation capacity of the cellulose by the pathogen, can translate into declined disease in compatible host-pathogen interactions.


2014 ◽  
Vol 9 (1) ◽  
Author(s):  
Scott W. Mattner ◽  
Oscar N. Villalta ◽  
Denise Wite ◽  
Ian J. Porter ◽  
Tony Arioli

2014 ◽  
Vol 24 ◽  
pp. 8-14 ◽  
Author(s):  
T.M. Sathees Kannan ◽  
S. Sownthariya ◽  
S. Anbazhakan

The present study was aimed to develop a cost-effective and efficient protocol for mass propagation of high-quality seedlings through tissue culture by using seaweed extract as biostimulants instead of synthetic chemicals. The nodal explant of field grown W. somnifera estabilised on Murashige and Skoogs medium (MS) and Gamborg B5 medium supplemented with six concentration of 2,4 D. The percentage of culture response from the nodal explant ranged from 44 to 80 and 3.0 mg l-1 2,4 D found to be best for callus induction. MS media containing different concentration of seaweed extract (10, 20, 40, 60, 80 and 100 %) were tested individually for shoot induction. The medium supplemented with 40 % seaweed extract exhibited maximum number of shoots with about 8.6 shoots/ callus and 80 % seaweed extract exhibited 4.3 shoots/ callus. It is evident from this study that seaweed extracts can be used as substitute for synthetic growth hormones for micropropagation of medicinally important plant W. somnifera for clonal propagation and conservation.


Sign in / Sign up

Export Citation Format

Share Document