prevotella ruminicola
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Youyoung Choi ◽  
Shin Ja Lee ◽  
Hyun Sang Kim ◽  
Jun Sik Eom ◽  
Seong Uk Jo ◽  
...  

AbstractSeveral seaweed extracts have been reported to have potential antimethanogenic effects in ruminants. In this study, the effect of three brown seaweed species (Undaria pinnatifida, UPIN; Sargassum fusiforme, SFUS; and Sargassum fulvellum, SFUL) on rumen fermentation characteristics, total gas, methane (CH4), carbon dioxide (CO2) production, and microbial populations were investigated using an in vitro batch culture system. Seaweed extract and its metabolites, total flavonoid and polyphenol contents were identified and compared. For the in vitro batch, 0.25 mg∙mL−1 of each seaweed extract were used in 6, 12, 24, 36 and 48 h of incubation. Seaweed extract supplementation decreased CH4 yield and its proportion to total gas production after 12, 24, and 48 h of incubation, while total gas production were not significantly different. Total volatile fatty acid and molar proportion of propionate increased with SFUS and SFUL supplementation after 24 h of incubation, whereas UPIN was not affected. Additionally, SFUS increased the absolute abundance of total bacteria, ciliate protozoa, fungi, methanogenic archaea, and Fibrobacter succinogenes. The relative proportions of Butyrivibrio fibrisolvens, Butyrivibrio proteoclasticus, and Prevotella ruminicola were lower with seaweed extract supplementation, whereas Anaerovibrio lipolytica increased. Thus, seaweed extracts can decrease CH4 production, and alter the abundance of rumen microbial populations.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2008
Author(s):  
Shin Ja Lee ◽  
Hyun Sang Kim ◽  
Jun Sik Eom ◽  
You Young Choi ◽  
Seong Uk Jo ◽  
...  

We evaluated whether olive leaves (OLs) are effective as feed additives and supplements for ruminants and the potential methane reduction effects during in vitro fermentation. Two Hanwoo cows (460 ± 20 kg) equipped with cannula were fed Timothy hay and corn-based feed 3% of the body weight at a ratio of 6:4 (8:30 a.m. and 5:00 p.m.). Ruminal fluid from the cows was collected and mixed before morning feeding. In vitro batch fermentation was monitored after 12 and 24 h of incubation at 39 °C, and OLs were used as supplements to achieve the concentration of 5% in the basal diet. At 12 h of fermentation, methane production decreased in the 5% OLs group compared to that in the control group, but not at 24 h. The proportion of cellulose-degrading bacteria, Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens, tended to increase in the 5% OLs group at 12 h. The amount of ammonia produced was the same as the polymerase chain reaction result for Prevotella ruminicola. At 12 h, the proportion of Prevotella ruminicola was significantly higher in the 5% OLs group. OLs may be used incorporated with protein byproducts or other methane-reducing agents in animal feed.


2021 ◽  
Vol 10 (8) ◽  
pp. e4210816900
Author(s):  
Aylle Medeiros Matos ◽  
Mariana Garcia Ornaghi ◽  
Venício Macêdo Carvalho ◽  
Vicente Alfonso Diaz Avila ◽  
Edinéia Bonin ◽  
...  

A preocupação pública com o uso rotineiro de antibióticos e ionóforos na dieta de ruminantes aumentou devido ao surgimento de bactérias resistentes aos antibióticos que podem representar riscos à saúde humana. Assim, esforços têm sido empregados para o desenvolvimento de compostos alternativos para substituir antibióticos e ionóforos na dieta de ruminantes. Este estudo foi realizado para avaliar os efeitos in vitro de uma mistura contendo óleos vegetais de caju e mamona e óleos essenciais de cravo-da-índia, eugenol, timol e vanilina sobre a atividade das bactérias Gram-negativas e Gram-positivas presentes no rúmen. O experimento foi elaborado de forma que cada bactéria fosse exposta às doses de 1,5, 3, 5 e 6,0 mg/mL da mistura, com seis repetições. As bactérias foram cultivadas em meio M2 de Hobson em tubos Hungate. A atividade antimicrobiana foi avaliada em espectrofotômetro a 600 nm. As leituras foram realizadas 0, 8, 12 e 24 horas após a inoculação a 39º C. As quatro concentrações (1,5, 3,0, 4,5 e 6,0 mg/mL) da mistura de óleos vegetais e essenciais inibiram o crescimento da Prevotella albensis, Prevotella bryantii, Prevotella ruminicola e Anaerovibrio lipolyticus 8 e 12 horas após a incubação. Para Ruminococcus albus e Ruminococcus flavefaciens a adição da mistura de óleos essenciais nas concentrações de 3,0 e 4,5 mg/mL resultou em maior impacto na dinâmica de crescimento, com redução na densidade óptica após 12 h de incubação. Em conclusão, os resultados mostram que a ação combinada dos óleos vegetais e essenciais influencia o crescimento de bactérias gram-negativas e gram-positivas e pode ser usado como um modulador ruminal. Deste modo, o estudo contribui com novas informações sobre a ação combinada dos óleos vegetais e essenciais como agentes antimicrobianos na produção de ruminantes.


2021 ◽  
pp. 1-22
Author(s):  
Y.J. Liu ◽  
J. Zhang ◽  
C. Wang ◽  
Q. Liu ◽  
G. Guo ◽  
...  

Abstract To investigate the influences of cobalt (Co) and folic acid (FA) on growth performance and rumen fermentation, Holstein male calves (n = 40) were randomly assigned to four groups according to their body weights. Cobalt sulfate at 0 or 0.11 mg Co/kg dry matter (DM) and FA at 0 or 7.2 mg/kg DM were used in a 2 × 2 factorial design. Average daily gain was elevated with FA or Co supplementation but the elevation was greater for supplementing Co in diets without FA than with FA. Supplementing FA or Co increased dry matter intake and total-tract nutrient digestibility. Rumen pH was unaltered with FA but reduced with Co supplementation. Concentration of rumen total volatile fatty acids was elevated with FA or Co inclusion. Acetate percentage and acetate to propionate ratio was elevated with FA inclusion. Supplementing Co decreased acetate percentage and increased propionate percentage. Activities of xylanase and α-amylase and populations of total bacteria, fungi, protozoa, Ruminococcus albus, Fibrobacter succinogenes and Prevotella ruminicola increased with FA or Co inclusion. Activities of carboxymethyl-cellulase and pectinase increased with FA inclusion and population of methanogens decreased with Co addition. Blood folates increased and homocysteine decreased with FA inclusion. Blood glucose and vitamin B12 increased with Co addition. The data suggested that supplementing 0.11 mg Co/kg DM in diets containing 0.09 mg Co/kg DM increased growth performance and nutrient digestibility but had no improvement on the effects of FA addition in calves.


Author(s):  
Chao-Fan Yin ◽  
Ying Xu ◽  
Shi-Kai Deng ◽  
Wen-Long Yue ◽  
Ning-Yi Zhou

As a water-soluble polymer, the widely used polyvinyl alcohol (PVA) is produced from hydrolysis of polyvinyl acetate. Microbial PVA carbon backbone cleavage via a two-step reaction of dehydrogenation and hydrolysis has been well studied. Content of acetyl group is a pivotal factor affecting performance of PVA derivatives in industrial application, and deacetylation is a non-negligible part in PVA degradation. However, the genetic and biochemical studies of its deacetylation remain largely elusive. Here, Comamonas sp. strain NyZ500 was isolated for its capability of growing on acetylated PVA from activated sludge. A spontaneous PVA-utilization deficient mutant strain NyZ501 was obtained when strain NyZ500 was cultured in rich media. Comparative analysis between the genomes of these two strains revealed a fragment (containing a putative hydrolase gene dacApva) deletion in NyZ501 and dacApva-complemented strain NyZ501 restored the ability to grow on PVA. DacApva, which shares 21% identity with xylan esterase AxeA1 from Prevotella ruminicola 23, is a unique deacetylase catalyzing the conversion of acetylated PVA and its derivatives to deacetylated counterparts. This indicates that strain NyZ500 utilizes acetylated PVA via acetate as a carbon source to grow. DacApva also possessed the deacetylation ability for acetylated xylan and the antibiotic intermediate 7-aminocephalosporanic acid (7ACA) but the enzymes for the above two compounds had no activities against PVA derivatives. This study enhanced our understanding of the diversity of microbial degradation of PVA and DacApva characterized here is also a potential biocatalyst for the eco-friendly biotransformation of PVA derivatives and other acetylated compounds. IMPORTANCE: Water-soluble PVA, which possesses a very robust ability to accumulate in the environment, has a very grave environmental impact due to its widespread use in industrial and household applications. On the other hand, chemical transformation of PVA derivatives is currently being carried out at high energy consumption and high pollution conditions using hazardous chemicals (such as NaOH, methanol) under high temperatures. The DacApva reported here performs PVA deacetylation under mild conditions, then it has a great potential to be developed into an eco-friendly biocatalyst for biotransformation of PVA derivatives. DacApva also has deacetylation activity for compounds other than PVA derivatives, which facilitates its development into a broad-spectrum deacetylation biocatalyst for production of certain desired compounds.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Sandra Bibiana Aguilar-Marin ◽  
Claudia Lorena Betancur-Murillo ◽  
Gustavo A. Isaza ◽  
Henry Mesa ◽  
Juan Jovel

Abstract Background Ruminants burp massive amounts of methane into the atmosphere and significantly contribute to the deposition of greenhouse gases and the consequent global warming. It is therefore urgent to devise strategies to mitigate ruminant’s methane emissions to alleviate climate change. Ruminal methanogenesis is accomplished by a series of methanogen archaea in the phylum Euryarchaeota, which piggyback into carbohydrate fermentation by utilizing residual hydrogen to produce methane. Abundance of methanogens, therefore, is expected to affect methane production. Furthermore, availability of hydrogen produced by cellulolytic bacteria acting upstream of methanogens is a rate-limiting factor for methane production. The aim of our study was to identify microbes associated with the production of methane which would constitute the basis for the design of mitigation strategies. Results Moderate differences in the abundance of methanogens were observed between groups. In addition, we present three lines of evidence suggesting an apparent higher abundance of a consortium of Prevotella species in animals with lower methane emissions. First, taxonomic classification revealed increased abundance of at least 29 species of Prevotella. Second, metagenome assembly identified increased abundance of Prevotella ruminicola and another species of Prevotella. Third, metabolic profiling of predicted proteins uncovered 25 enzymes with homology to Prevotella proteins more abundant in the low methane emissions group. Conclusions We propose that higher abundance of ruminal Prevotella increases the production of propionic acid and, in doing so, reduces the amount of hydrogen available for methanogenesis. However, further experimentation is required to ascertain the role of Prevotella on methane production and its potential to act as a methane production mitigator.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yuzhu Sha ◽  
Jiang Hu ◽  
Bingang Shi ◽  
Renqing Dingkao ◽  
Jiqing Wang ◽  
...  

A cattle-yak, which is a hybrid between a yak (Bos grunniens) and cattle (Bos taurus), is an important livestock animal, but basic questions regarding its physiology and environmental adaptation remain unanswered. To address this issue, the present study examined the species composition and functional characteristics of rumen microorganisms in the cattle-yak of different ages (2 and 3 years old) by metagenomic analysis. We found that rumen microbial community composition was similar at the two ages. Firmicutes, Fibrobacteres, Euryarchaeota, Bacteroidetes, and Proteobacteria were the predominant phyla, with Firmicutes accounting for the highest percentage of bacteria in 2-year-old (48%) and 3-year-old (46%) animals. Bacterial species involved in lignocellulose degradation were detected in the rumen of adult cattle-yaks including Ruminococcus flavefaciens, Ruminococcus albus, Fibrobacter succinogenes, and Prevotella ruminicola, with F. succinogenes being the most abundant. A total of 145,489 genes were annotated according to the Carbohydrate-active Enzyme database, which identified glycoside hydrolases as the most highly represented enzyme family. Further functional annotation revealed specific microflora and genes in the adult rumen that are potentially related to plateau adaptability. These results could explain the heterosis of the cattle-yak and provide insight into mechanisms of physiologic adaptation in plateau animals.


2020 ◽  
Vol 123 (10) ◽  
pp. 1109-1116 ◽  
Author(s):  
C. Wang ◽  
C. Liu ◽  
G. W. Zhang ◽  
H. S. Du ◽  
Z. Z. Wu ◽  
...  

AbstractThis study evaluated the effects of rumen-protected folic acid (RPFA) and betaine (BT) on growth performance, nutrient digestion and blood metabolites in bulls. Forty-eight Angus bulls were blocked by body weight and randomly assigned to four treatments in a 2 × 2 factorial design. BT of 0 or 0·6 g/kg DM was supplemented to diet without or with the addition of 6 mg/kg DM of folic acid from RPFA, respectively. Average daily gain increased by 25·2 and 6·29 % for addition of BT without RPFA and with RPFA, respectively. Digestibility and ruminal total volatile fatty acids of neutral-detergent fibre and acid-detergent fibre increased, feed conversion ratio and blood folate decreased with the addition of BT without RPFA, but these parameters were unchanged with BT addition in diet with RPFA. Digestibility of DM, organic matter and crude protein as well as acetate:propionate ratio increased with RPFA or BT addition. Ruminal ammonia-N decreased with RPFA addition. Activity of carboxymethyl cellulase, cellobiase, xylanase, pectinase and protease as well as population of total bacteria, protozoa, Fibrobacter succinogenes and Ruminobacter amylophilus increased with RPFA or BT addition. Laccase activity and total fungi, Ruminococcus flavefaciens and Prevotella ruminicola population increased with RPFA addition, whereas Ruminococcus albus population increased with BT addition. Blood glucose, total protein, albumin, growth hormone and insulin-like growth factor-1 increased with RPFA addition. Addition of RPFA or BT decreased blood homocysteine. The results indicated that addition of BT stimulated growth and nutrient digestion in bulls only when RPFA was not supplemented.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 441-444
Author(s):  
Laura Piña-Gónzalez ◽  
Juan Miranda-Ríos ◽  
Rogelio Alejandro Alonso-Morales ◽  
Otoniel Maya ◽  
Luis Corona ◽  
...  

Abstract Worldwide, there is a need to discover new microorganisms that efficiently degrade lignocellulosic complexes that would help to improve the digestibility of low-quality agricultural byproducts. The aim of the study was to evaluate the effects of a corn stover-based diet (CSD) on rumen bacteria. Ruminal fluid of 6 Holstein cows (595 ± 96 kg) was collected during two periods. During first period, animals were consuming a diet based on corn silage and oat hay (DB), mineral premix and water ad libitum (50:50, DM). In second period, animals were provided a CSD (100% DM), mineral premix and water ad libitum for 45 days. Ruminal fluid was collected through esophageal tube, filtered and stored at -80°C until DNA extraction. Rumen microorganisms were identified by sequencing the 16SrRNA gene using the Illumina Miseq platform and primers for V3 and V4 regions. Data were analyzed by QIIME 1.9. Analysis of variance was performed for a completely randomized design using the MIXED procedure of SAS 9.1. The taxonomic affiliation showed that both populations were mainly composed of Firmicutes, Bacteroidetes and Proteobacteria. The most abundant bacteria species in both diets were Ruminococcus flavefaciens, Prevotella copri, Prevotella ruminicola, Fibrobacter succinogenes, Bacillus coagulans, Bacteroides uniformis and Selenomonas ruminantium. Feeding a CSD, increased the relative abundance of Prevotella ruminicola (from 6.1 to 20.9%, P < 0.01), Streptococcus luteciae (from 0.05 to 0.78%, P < 0.01), Clostridium aminophilum (0.45 to 3.1%, P < 0.01), Selenomonas ruminantium (5.2 to 21.8%, P < 0.02) and Pantoea agglomerans (0.7 to 3.9%, P < 0.01) and decreased Propionibacterium acnes (0.7 to 0.1%, P < 0.02) and Bacteroides ovatus (0.9 to 0.1%, P < 0.01). Feeding cattle with a diet with a more lignified forage like CSD led to the proliferation of bacteria such as Prevotella ruminicula, Streptococcus luteciae, Clostridium aminophilum, Selenomonas ruminantium and Pantoea agglomerans.


Sign in / Sign up

Export Citation Format

Share Document