scholarly journals Volatile organic compound modification by lactic acid bacteria in fermented chilli mash using GC-MS headspace extraction

2021 ◽  
Vol 765 (1) ◽  
pp. 012043
Author(s):  
S Md Nor ◽  
N N Mohd Yusof ◽  
P Ding
2021 ◽  
pp. 1-7
Author(s):  
Mustafa Yavuz ◽  
Ceyda Kasavi ◽  
Ebru Toksoy Öner

Abstract In the burgeoning demand for optimization of cheese production, ascertaining cheese flavour formation during the cheese making process has been the focal point of determining cheese quality. In this research reflection, we have highlighted how valuable volatile organic compound (VOC) analysis has been in assessing contingent cheese flavour compounds arising from non-starter lactic acid bacteria (NSLAB) along with starter lactic acid bacteria (SLAB), and whether VOC analysis associated with other high-throughput data might help provide a better understanding the cheese flavour formation during cheese process. It is widely known that there is a keen interest to merge all omics data to find specific biomarkers and/or to assess aroma formation of cheese. Towards that end, results of VOC analysis have provided valuable insights into the cheese flavour profile. In this review, we are pinpointing the effective use of flavour compound analysis to perceive flavour-forming ability of microbial strains that are convenient for dairy production, intertwining microbiome and metabolome to unveil potential biomarkers that occur during cheese ripening. In doing so, we summarised the functionality and integration of aromatic compound analysis in cheese making and gave reflections on reconsidering what the role of flavour-based analysis might have in the future.


2016 ◽  
Vol 15 (3) ◽  
pp. 251-259
Author(s):  
Shreedhar Devkota ◽  
◽  
Jin Oh Jo ◽  
Dong Lyong Jang ◽  
Young Jin Hyun ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 104
Author(s):  
Hung-Yang Kuo ◽  
Wei-Riu Cheng ◽  
Tzu-Heng Wu ◽  
Horn-Jiunn Sheen ◽  
Chih-Chia Wang ◽  
...  

This paper presents the synthesis and evaluation of a carbon molecular sieve membrane (CMSM) grown inside a MEMS-fabricated μ-preconcentrator for sampling highly volatile organic compounds. An array of µ-pillars measuring 100 µm in diameter and 250 µm in height were fabricated inside a microfluidic channel to increase the attaching surface for the CMSM. The surface area of the CMSM was measured as high as 899 m2/g. A GC peak amplification factor >2 × 104 was demonstrated with gaseous ethyl acetate. Up to 1.4 L of gaseous ethanol at the 100 ppb level could be concentrated without exceeding the capacity of this microchip device. Sharp desorption chromatographic peaks (<3.5 s) were obtained while using this device directly as a GC injector. Less volatile compounds such as gaseous toluene, m-xylene, and mesitylene appeared to be adsorbed strongly on CMSM, showing a memory effect. Sampling parameters such as sample volatilities, sampling capacities, and compound residual issues were empirically determined and discussed.


Sign in / Sign up

Export Citation Format

Share Document