scholarly journals Experimental study on ultra high pressure hydraulic cutting seam pressure relief and permeability enhancement of strip drilling along seam in C19 coal seam of Shiping No.1 Coal Mine

2021 ◽  
Vol 804 (2) ◽  
pp. 022040
Author(s):  
Zhanjin Lu ◽  
Fei Ji
2021 ◽  
Vol 236 ◽  
pp. 01029
Author(s):  
Siqian Li

In order to solve the problems of low gas drainage rate and long drainage time in thick coal seam with low permeability, ultra-high pressure hydraulic slotting pressure relief and permeability enhancement technology was applied in the test. The practice shows that after adopting the ultra-high pressure hydraulic slotting, the gas drainage rate is greatly improved, the time for reaching the standard of drainage is shortened, and the difficult problem of gas control in the mining face of thick coal seam is solved, which provides technical guidance for high-efficiency gas control in thick coal seam with similar conditions in mining area.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xinzhe Zhang ◽  
Piotr Wiśniewski ◽  
Sławomir Dykas ◽  
Guojie Zhang

High-pressure abrasive water jet flushing (HPAWJF) is an effective method used to improve coal seam permeability. In this study, based on the theories of gas flow and coal deformation, a coupled gas-rock model is established to investigate realistic failure processes by introducing equations for the evolution of mesoscopic element damage along with coal mass deformation. Numerical simulation of the failure and pressure relief processes is carried out under different coal seam permeability and flushing length conditions. Distributions of the seepage and gas pressure fields of the realistic failure process are analyzed. The effects of flushing permeability enhancement in a soft coal seam on the gas drainage from boreholes are revealed by conducting a field experiment. Conclusions can be extracted that the gas pressure of the slotted soft coal seam is reduced and that the gas drainage volume is three times higher than that of a conventional borehole. Field tests demonstrate that the gas drainage effect of the soft coal seam is significantly improved and that tunneling speed is nearly doubled. The results obtained from this study can provide guidance to gas drainage in soft coal seams regarding the theory and practice application of the HPAWJF method.


2016 ◽  
Vol 8 (3) ◽  
pp. 168781401663679 ◽  
Author(s):  
Can Kang ◽  
Haixia Liu ◽  
Xiuge Li ◽  
Ya Zhou ◽  
Xiaonong Cheng

2019 ◽  
Vol 118 ◽  
pp. 02032
Author(s):  
Min Li ◽  
Changming Ling ◽  
Biao Ye ◽  
Junhao Cai ◽  
Wenzhen Wang ◽  
...  

Based on the theory of high pressure supercooling and pressure relief quick freezing, the ultra-high pressure instantaneous freezing device is developed. This device can break through the limitations of existing ultra-high pressure device design. Through the new hydraulic transmission design, It can complete fast pressurization, fast pressure relief and achieve continuous work. The matching of whole systems under certain load conditions, hydraulic transmission system, refrigeration system, pressure vessel and pressure relief system has been completed. The device can realize the whole process of ultra-high pressure quick freezing from food feeding, pressure cooling, pressure relief instant freezing and semi-automatic food discharging. Compared with the conventional same-capacity quick-freezing device, the energy consumption of the instantaneous freezing device under the design condition is only 24.52% of that of the traditional quick-freezing device, which greatly saves energy consumption. From the perspective of application, the design concept of ultra-high pressure quick-freezing device is perfected and the practical process of ultra-high pressure quick-freezing is advanced.


2006 ◽  
Vol 129 (4) ◽  
pp. 485-490 ◽  
Author(s):  
A. Chillman ◽  
M. Ramulu ◽  
M. Hashish

An experimental study was conducted to explore the surface preparation as well as the effects of high-pressure waterjet peening at 600MPa on the surface integrity and finish of metals. The concept of larger droplet size and multiple droplet impacts resulting from an ultra-high-pressure waterjet was used to explore and develop the peening process. A combination of microstructure analysis, microhardness measurements, and profilometry were used in determining the depth of plastic deformation and surface finish that result from the surface treatment process. It was found that waterjet peening at 600MPa induces plastic deformation to greater depths in the subsurface layer of metals than laser shock peening. The degree of plastic deformation and the state of the material surface were found to be strongly dependent on the peening conditions and desired surface roughness. Based on these first investigation results, water peening at 600MPa may serve as a new method for introducing compressive residual stresses in engineering components.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Delong Zou ◽  
Xiang Zhang

When stratified mining is adopted in high-gas and extrathick coal seam, a large amount of pressure-relief gas of the lower layer flows into the upper layer goaf along the cracks in the layer, resulting in upper layer working face to frequently exceed the gas limit. And ordinary drilling can no longer meet the requirements of the pressure-relief gas drainage of the lower layer. The 205 working face of Tingnan Coal Mine is taken as the test background in this paper, and based on the “pressure-relief and flow-increase” effect of the lower layer under the action of mining stress during the upper layer mining, the gas drainage of kilometer directional drilling in lower layer is studied. According to the distribution characteristics of support pressure before and after the working face, the pressure-relief principle, fracture development characteristics, and gas migration law of the lower layered coal body are analyzed in the process of advancing the upper layered working face in the extrathick coal seam with high gas. The maximum depth of goaf damage is calculated theoretically, and the Flac3D numerical simulation of the failure deformation of the 205 working face floor is carried out. It is found that the maximum depth of plastic failure of the lower layer is about 13 m. According to the plastic deformation of the lower layer under different vertical depths and the movement of coal and rock mass, it is determined that the reasonable range of kilometer directional drilling in the lower layer is 6–9 m below the floor vertical depth. From 15 m to 45 m in the two parallel grooves, there is no fracture failure with a sharp increase or decrease in the displacement in the local range. Meanwhile, in this part, the roof falling behind is not easy to compaction, and the displacement of the floor is large, which does not cause plastic damage. The degree of pressure relief is more sufficient, and the permeability of the lower layer is good. Therefore, drilling should be arranged as much as possible along the working face in this tendency range. The determination of reasonable arrangement range of kilometer directional drilling in extrathick coal seam provides reference index and theoretical guidance for industrial test of working face and also provides new ideas for gas control of stratified mining face in high-gas and extrathick coal seam.


Sign in / Sign up

Export Citation Format

Share Document