scholarly journals Reasonable Scope of Kilometer Drilling in Lower Layer of Extrathick Coal Seam: A Case Study of Tingnan Coal Mine, China

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Delong Zou ◽  
Xiang Zhang

When stratified mining is adopted in high-gas and extrathick coal seam, a large amount of pressure-relief gas of the lower layer flows into the upper layer goaf along the cracks in the layer, resulting in upper layer working face to frequently exceed the gas limit. And ordinary drilling can no longer meet the requirements of the pressure-relief gas drainage of the lower layer. The 205 working face of Tingnan Coal Mine is taken as the test background in this paper, and based on the “pressure-relief and flow-increase” effect of the lower layer under the action of mining stress during the upper layer mining, the gas drainage of kilometer directional drilling in lower layer is studied. According to the distribution characteristics of support pressure before and after the working face, the pressure-relief principle, fracture development characteristics, and gas migration law of the lower layered coal body are analyzed in the process of advancing the upper layered working face in the extrathick coal seam with high gas. The maximum depth of goaf damage is calculated theoretically, and the Flac3D numerical simulation of the failure deformation of the 205 working face floor is carried out. It is found that the maximum depth of plastic failure of the lower layer is about 13 m. According to the plastic deformation of the lower layer under different vertical depths and the movement of coal and rock mass, it is determined that the reasonable range of kilometer directional drilling in the lower layer is 6–9 m below the floor vertical depth. From 15 m to 45 m in the two parallel grooves, there is no fracture failure with a sharp increase or decrease in the displacement in the local range. Meanwhile, in this part, the roof falling behind is not easy to compaction, and the displacement of the floor is large, which does not cause plastic damage. The degree of pressure relief is more sufficient, and the permeability of the lower layer is good. Therefore, drilling should be arranged as much as possible along the working face in this tendency range. The determination of reasonable arrangement range of kilometer directional drilling in extrathick coal seam provides reference index and theoretical guidance for industrial test of working face and also provides new ideas for gas control of stratified mining face in high-gas and extrathick coal seam.

2018 ◽  
Vol 53 ◽  
pp. 02003
Author(s):  
Rili Yang ◽  
Xiaoxia Zhao ◽  
Lan Yu

Through the analysis on the drilling hole gas drainage effect(2225 working face crossing seam drainage, K2air way drilling field layout, crossing seam drainage gas in K3b coal seam),it is found that hole sealing technology directly affects gas drainage. Based on the original hole sealing technology and combining with field conditions, an improved drilling scheme for transportation roadway was proposed, considering the drilling layout, sealing material and depth, grouting time, pre-plunging depth. Test results of the scheme showed that, with a rise in the cost and drilling pressure relief time, the pressuring-relief gas drainage amount was greatly increased, the drilling field pre-pumping concentration was enhanced to 4.4times, the drainage efficiency was improved.


2021 ◽  
pp. 014459872110102
Author(s):  
Shengrong Xie ◽  
Junqi Cui ◽  
Dongdong Chen ◽  
Ping Chen

In order to solve the problem of difficult gas extraction in coal mine, a method of gas extraction from coal seam by interval hydraulic flushing is put forward. Based on the coal seam gas occurrence conditions of 7609 working face in Wuyang Coal Mine, the numerical simulation research on gas drainage by ordinary drilling and hydraulic flushing drilling was carried out by using COMSOL numerical simulation software. The results show that with the increase of hydraulic flushing coal quantity, the effective gas drainage radius also increases. The effective extraction radius of ordinary drilling is 0.5 m, and the effective extraction radius is 1.0 m, 1.2 m and 1.3 m respectively when the coal flushing quantity is 0.5t/m, 1.0t/m and 1.5t/m. As multiple boreholes are drained at the same time, the boreholes will affect each other, which will reduce the gas pressure and increase the effective drainage radius, the spacing between boreholes can be greater than twice the effective drainage radius of a single borehole when arranging boreholes. And the smaller the flushing interval, the more uniform the gas pressure reduction area. According to the numerical simulation results, the ordinary drilling and 1.0t/m interval hydraulic flushing test were carried out in the field. Through observation and analysis, the gas concentration of the interval hydraulic flushing drilling module was increased by 31.2% and the drainage purity was increased by 5.77 times compared with the ordinary drilling module. It shows that the interval hydraulic flushing drilling can effectively improve the gas drainage effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qianjia Hui ◽  
Zengzhu Shi ◽  
Dongxu Jia

On August 2, 2019, a catastrophic rockburst disaster occurred in Tangshan mine, causing death of 7 miners. After the investigation, the coal mine is facing reproduction. Taking the 0291 panel as the engineering background, this paper studies the coal seam blasting pressure relief and ground stress monitoring technology in working face retreat. During the roadway development and working face excavation, coal seam blasting was adopted to transfer the high ground stress of coal seam to the deep ground of the coal body. The blasting operation is presented in detail in this paper. In the working face retreat stage, drilling powder method, hydraulic shield resistance monitoring, roof displacement, and vibration monitoring methods are implemented. The results show that the pressure relief range of coal seam is 4–12 m in the coal mass after blasting. The shield working resistance is stable at 20–30 MPa. The range of relative displacement of the roof is about −1.0 to 2.5 mm, and the maximum vertical vibration velocity is in the range of 7–11 cm/s, up to 12 cm/s. The measured parameters are acceptable, so it is concluded that 0291 panel can be safely mined. This study provides a reference for the coal seam blasting design for rockburst coal mine and provides a technical means for the analysis of pressure release effect and dynamic pressure monitoring during working face retreating.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Hong-sheng Tu ◽  
Shi-hao Tu ◽  
De-fu Zhu ◽  
Ding-yi Hao ◽  
Kai-jun Miao

After coal is extracted from a working face in a steep coal seam (SCS), the immediate roof tends to cave in and refill the lower part of the goaf. Based on the geological conditions of a work area in a SCS and the characteristics of roof caving, this study proposed a formula for the width of the backfill in the goaf and analyzed the main factors influencing it. Based on the small-deflection theory for elastic thin plates, a working face model was created for the mechanical analysis of the main roof above a SCS before the roof fractures for the first time. Then, a roof deflection equation was derived for the estimation roof deformation under the action of both the load from overlying strata and the support provided by the backfill in the goaf. The theoretical analysis combined with the actual operational parameters at the Zuoqipian working face in #49 seam of Xintie Coal Mine shows that the maximum roof deflection is around 0.8 m and occurs at a location 39 m from the upper end of the working face. Fractures will first develop in the upper sections of the frontal and rear walls of the face and the middle of the upper suspended roof due to tension or shearing and ultimately form an E-shaped pattern. The measured support pressure and the roof deformation obtained by theoretical analysis show a similar distribution pattern, indirectly confirming the accuracy of the theoretical results.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ming Ji ◽  
Zhong-guang Sun ◽  
Wei Sun

Based on the dynamic expressions of permeability and porosity of the coal seam derived in the paper, a multiphysical field coupling numerical model of gas migration under the interaction of stress field and seepage field was established. The gas drainage project #3 Coal Seam operated by Sima Coal Industry Co., Ltd., was selected as the study object. Taking different drainage time periods in various positions of drainage holes into consideration, combined with the advance situation of the 1207 working face in the Sima Coal Mine, a mixed layout gas drainage scheme featured with the effective borehole spacing was obtained through the COMSOL multiphysics simulation. In addition, a series of field industrial tests were performed to validate the research result, revealing that comprehensively considering the extraction time of coal and optimizing the layout of extraction boreholes can effectively improve the engineering economic benefits.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hongbing Wang ◽  
Zhiheng Cheng ◽  
Tie Li ◽  
Liang Chen ◽  
Quanle Zou ◽  
...  

The aim of this study is to explore the coupling relationship between fractures in overlying strata and gas seepage fields for pressure relief during mining of outburst-prone coal seam groups and to quantitatively characterize the distribution characteristics of favorable areas for coalbed methane (CBM) drainage in mining-induced fractures of overlying strata. For these purposes, by taking Shaqu No. 1 Coal Mine (Lvliang City, Shanxi Province, China) as a research object, this research studied migration and caving characteristics of overlying strata by combining physical similar material simulation, numerical simulation, and field measurement. Moreover, this study analyzed spatial distribution patterns of mining-induced fractures in overlaying strata, quantitatively characterized distribution parameters of asymmetric-oblique-quadrilateral fracture development zones in overlying strata, and precisely divided areas favorable for CBM drainage. On this basis, evolution laws of an asymmetric fracture-seepage community in overlying strata in outburst-prone coal seam groups were obtained, thus optimizing design parameters for directional drilling in the fracture zone in overlying strata. The research results demonstrate that, due to mining-induced influences, strata present different migration and rupture patterns along rupture lines on both sides. Because of different rupture angles α and β, mining-induced fractures in overlying strata are distributed as an asymmetric-oblique-quadrilateral fracture development body in space. Furthermore, based on the coupling relationship between fracture development states and pressure-relief gas seepage in the fracture development zone in overlying strata of the 4305 rear working face in the mine, this research obtained rupture angles α ∈ [74, 90) and ß ∈ (70, 82] on both sides of the fracture development zone. Moreover, the intervals favorable for CBM drainage for pressure relief on both sides of the fracture development zone in overlying strata of 4305 rear working face in the mine were separately determined as xaj ≤ 22.68 m and 24 m ≤ xβj ≤ 37.8 m. If the gas drainage system is designed in this zone, it is of great significance to precise and efficient pressure-relief CBM drainage in the fracture zone and ensure production safety in the mining space.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Youxin Zhao ◽  
Qingjie Qi ◽  
Xinlei Jia

To accurately and reliably predict the time of spontaneous combustion of fractured coal around a borehole induced by gas drainage along the seam, this study performed an orthogonal test taking the No. 10 Coal Mine of Pingdingshan as the research object, in terms of the suction negative pressure and coal seam buried depth. COMSOL Multiphysics was used to model the orthogonal test results, and a multielement statistical analysis of four factors and their relationships with the spontaneous combustion of coal around the borehole and a single-factor analysis in line with the site conditions were performed on the modeling results through multiple regression. The results showed a nonlinear regression relationship between the sealing hole length, sealing hole depth, negative pressure, and coal seam depth and the spontaneous combustion of the coal around the gas drainage borehole; the prediction regression model is significant. Taking the field gas drainage in the No. 10 Coal Mine of Pingdingshan as an example, the relationship between the time of spontaneous combustion of gas drainage and the drainage pressure follows a power of two. When the drainage negative pressure is less than 45 kPa, the coal around the borehole is more likely to undergo spontaneous combustion with increasing pressure, and the sealing hole length has a positive linear correlation with the time of spontaneous combustion of the coal around the borehole. When the sealing hole length is 23 m, the time of spontaneous combustion of the coal around the gas drainage hole is >500 days, and the coal around the borehole does not easily undergo spontaneous combustion. When the sealing depth is 15 m, the time of spontaneous combustion of the coal around the gas drainage hole is 76 days, which is most likely to cause spontaneous combustion.


2021 ◽  
pp. 014459872110635
Author(s):  
Wei Zhao ◽  
Wei Qin

Coal mining results in strata movement and surrounding rock failure. Eventually, manual mining space will be occupied by the destructed coal rock, making it difficult to conduct field tests of the coal seam to explore gas seepage and transport patterns. Therefore, computational fluid dynamics (CFD) numerical computation is an important tool for such studies. From the aspect of gas pre-drainage, for layer-through boreholes in the floor roadway of the 8,406 working face in Yangquan Mine 5 in China, reasonable layout parameters were obtained by CFD optimization. For effectively controlling the scope of boreholes along coal seam 9 in the Kaiyuan Mine, CFD computation was performed. The results revealed that the horizontal spacing between boreholes should be ≤2 m when a tri-quincuncial borehole layout is used. Optimization of the surface well position layout for the fault structure zone in the Xinjing Mine of the Yangquan mining area indicated that the horizontal distance between the surface well and the fault plane should be <150 m. From the aspect of gas drainage with mining-induced pressure relief, CFD computation was performed for pressure-relieved gas transport in the K8205 working face of Yangquan Mine 3. The results showed that forced roof caving should be used before the overhang length of hard roof reaches 25 m in the K8205 working face to avoid gas overrun. From the aspect of gas drainage from the abandoned gob, surface well control scopes at different surface well positions were computed, and an O-ring fissure zone is proposed as a reasonable scope for the surface well layout. CFD computation has been widely applied to coal and gas co-extraction in the Yangquan mining area and has played a significant role in guiding related gas drainage engineering practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Beifang Gu ◽  
Yanling Wu

To solve the problems of gas predrainage in deep seams with “three softs” and low-air permeability, hydraulic punching pressure relief antireflection technology is proposed on the basis of the research background of gas predrainage technology in Lugou Mine to alleviate technical problems, such as low gas drainage efficiency, in this mine. Through the analysis of the mechanism of hydraulic punching and coal breaking, combined with FLAC3D software, a hydraulic punching pressure relief antireflection model is established. Then, the fracture radii of coal rock are simulated and calculated. The results show that, under hydraulic punching with a water pressure of 10 MPa and coal outputs of 3 m3, 6 m3, 9 m3, and 12 m3, the fracture radii of coal and rock are 3.4 m, 4.8 m, 5.5 m, and 5.9 m, respectively. Using the software to fit the relationship between coal output V and hydraulic punching fracture radius R under the same water pressure, R = 2.32479 V0.3839 is obtained. The field test is carried out in the bottom drainage roadway of 32141 in Lugou Mine. The application effect is as follows: the gas concentration of hydraulic punching with a coal output of 3 m3 is twice that of ordinary drilling, and the coal output of hydraulic punching with a coal output of 6 m3 is four times that of ordinary drilling. The extraction concentration is four times that of ordinary drilling, and the extraction concentration of hydraulic punching with a coal output of 9 m3 is 6.4 times that of ordinary drilling. Combining the results of the numerical simulation and taking into account the actual construction situation on site, the coal output of water jetting from the borehole is 9 m3, and the fracture radius is 5.5 m. This outcome means that the effective half radius is 5.5 m, and the borehole spacing is 7.7 m. These values are the construction parameters for large-scale applications. This proposal provides effective technology and equipment for gas drainage in the deep three-soft coal seam. Consequently, it has promotion and reference significance for gas drainage in coal seam of the same geological type.


Sign in / Sign up

Export Citation Format

Share Document